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Justus Piater

Piater: “An unsuccessful meta-science that spawns successtul scientific disciplines”
“Catch-22: once we understand how to solve a problem, it is no longer considered
to require intelligence...”



What is this talk about? So what is Al? All? Nothing?

Quantum Machine
Learning (QML)

e

Reinforcement learning and a bit “beyond”

Machine Learning/Al
(ML/AI)




Outline

Part 1. “Ask not what Reinforcement Learning can do for you”

¢ The theory, bottlenecks and applications

Part 2: “... ask what you can do for reinforcement learning...”

¢ Quantum environments and model-based learning

Part 3: “... and for some aspects of planning on small QCs”

¢ Learning and reasoning (actually...SAT solving)



But... what is Machine Learning?

Supervised learning Unsupervised learning
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Learning P(labels|data) given Learning structure in P(data)
samples from P(data,labels)  give samples from P(data)

Generalize knowledge  Generate knowledge



Reinforcement learning:
Agent - environment paradigm

- Agent\ - Environment A
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Also: MIT technology review breakthrough technology of 2017

[AlphaGo anyone?]



RL more formal

Basic concepts:

Environment:
Markov Decision Process

" Agent _
9 Return: R=f 47y + g4

/ Environment Policy: 7 (as)
S
a Figures of merit:

Learning
model finite-horizon: Ry = Z T

Reward(S, Q) <N

infinite-horizon: R = Z ')"k"_'k

Optimality: W; (als)




[s that all?

+ More complicated than it seems already in the simplest case;

value iteration, policy search, value function approximation,
model-free, model-based, actor-critic, Projective Simulation...

+Infinite action/state spaces
+ Partially observable MDPs
+ Goal MDPs

Knowledge transfer (and representation), Planning...
. Al?



Reinforcement learning vs. supervised learning

7 11

+ learning “action” - “state” associations similar to “label” - “data” association
+how data is accessed, and how it is organized is different

»not 1...d, not learning a distribution, examples provided implicitly
(delayed reward, credit assignment problems)



RL vs. SL
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MDP Is tree-like
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RL vs. SL

Example: learning chess

MDP is tree-like, but not a tree

examples given only indirectly: credit assignment
(unless immediate reward)

+strong causal & temporal structure
(agent’s actions influence the environment)

NB: supervised learning, oracle identification, etc.
can be cast as (degenerate) MDP learning problems
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From pretty MDPs ... to Using RL in Real Life

Navigating a city...

Stop-motion films of agent trained in Paris. The images are superposed with a map of

the city, showing the goal location (in red) and the agent location and field of view (in
green). Note that the agent does not see the map, only the lat/lon coordinates of the

I tion.
goal location https://sites.google.com/view/streetlearn

P. Mirowski et. al, Learning to Navigate in Cities Without a Map, arXiv:1804.00168
35100 e ————
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So how to do RL (real life) RL

» via pure RL: know only what to do in situations one encounters

» better. generalize over personal experiences — do similar in similar situations
(still,_unlike in big data, “training set” is a near-negligible fraction...)

+ what we actually do: generate fictitious experiences
(“If | play X, my opponent plays Y, | play Z....")

conjecture: most human experiences are fictitious (tilted face problem)



Learning unified

via pure RL: old-school RL Sonr

+ better: generali.ze over supervised learning-like Doing...ok
personal experiences

- further: generate unsupervised learning-like Hard as heck

fictitious experiences

conjecture: most human experiences are fictitious (tilted face problem)



“The cake picture” for general RL/AI: unifying ML

Direct experience

pure RL

expensive
generallzatlon | Can generalize (only)
(SL) " over direct experience
generation
(UL) Can generalize over

simulated experience?

“If intelligence was a cake, unsupervised learning would be the cake,

supervised learning would be the icing on the cake, and reinforcement
learning would be the cherry on the cake.”
-Yann LeCun

even the cherry can be as complicated as you wish



Progress in RL (connecting RL, SL ,and UL)

a) generalization (SL):
associating the correct actions, to previously unseen states

T (CL | s ) function approximati:nﬂ_@ (a | s )

-linear models (Sutton, '88) .
-neural networks (Lin, 92 eep learning
-decision trees, et(c... ) —wmmesy > AlphaGo

b) generation (UL): model-based learning

5 et
Q!% s | ?1 " “model”



Another aspect:

2) generation as simulation

because real experiences can be painful
(and expensive)



What | want to do when | grow up

here

Pre-training will have at least two flavors...
1) reinforcement learning (slow, faster than real life)
2) optimization (find optimal patterns of behaviour)

Both are computational bottlenecks

good Al will
learn hierarchically
and transfer
the learned to a
new domain

19



Progress in RL (connecting RL, SL ,and UL)

a) generalization (SL):
associating the correct actions, to previously unseen states

T (CL | s ) function approximati:nﬂ_e (CL | s )

-linear models (Sutton, '88) oo loar
) €eep learnin
:gzgiglorrlettworks (Lin, 92) = AlphaGo
Quantum enhancements have been

considered for both problems.
Here we focus on b)

b) gener

20



Part 2: ... ask what you can do for reinforcement learning...



Can | RL better if the environment is quantum?
What are environments?



Quantum Agent - Environment paradigm

Agent | > ‘Environment
a A={ai,as,...} S={s1,8,...}
CorQ S CorQ it it
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Agents (environments) are sequences of CPTP maps, acting on a private
and a common register - the memory and the interface, respectively.
Memory channels = combs = quantum strategies



What is the motivation again?

¢ Fundamental meaning of learning in the quantum world
¢« Speed-ups! “faster”, “better” learning
¢« What can we make better?

a) computational complexity  b) learning efficiency (‘genuine learning-related figures of merit’)
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Agent S Environment

4 speeding up classical interaction
Q | Q is like Groverizing an old-school telephone book..

Quantum-enhanced quantum-accesible RL
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Agent ) Environment > AgentQ n Environment®
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V. Dunjko, J. M. Taylor, H. J. Briegel
Quantum-enhanced machine learning
Phys. Rev. Lett. 117, 130501 (2016)
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Quantum-enhanced access:
Inspiration from oracular quantum computation...
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¢ think of Environment as Oracle




Quantum-enhanced access:
Inspiration from oracular quantum computation...
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¢ Use “quantum access” to oracle to learn useful information faster




But... environments are not like standard oracles...

(4 g g 4
OracU'lzaflO“ (blocking, accessing purification and recycling)

(taming the open environment)
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strict generalization



¢ Classical agent-environment

Agent Environment

Maze:

AJB [C
D v

Markov Decision Process:

L. Trenkwalder MSc.



Maze:

¢ Classical agent-environment

Agent Environment Agent
. Markov Decision Process:
|
= 2 | 3 B
v 2 5 C
v 4 7 D

Chiribella, G., D'Ariano, G. M. & Perinotti, P. Quantum Circuit Architecture. Phys. Rev. Lett. 101,
060401 (2008).




Maze:

¢ (Semi-)classical agent-environment

Agent Agent
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Maze:

¢ (Semi-)classical agent-environment
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Maze:

¢ (Semi-)classical agent-environment
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Why? Grover search for “best actions”

..e.. convert environment to reflection about | —7, \La i,, %>



¢ (Semi-)classical agent-environment
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How? Oraculization




Oraculization (blocking)

(taming the open environment)

quantum comb

O 3 hn W

causal network

“blocking”

Chiribella, G., D'Ariano, G. M. & Perinotti, P. Quantum Circuit Architecture. Phys. Rev. Lett. 101,
060401 (2008).

——



Oraculization (recovery and recycling)

(taming the open environment)

Classically specified oracle = (z1,z2,...,2,) = f(Z) € {0,1}




(A flavour of) quantum-enhanced reinforcement learning

A few results:

& Grover-like amplification for optima:

""—Agent-like } Environment-like )

€ Learning speedup in luck-favoring environments
€ quadratic improvements in meta-learning
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Quantum-enhanced machine learning
Vedran Dunjko, Jacob M. Taylor, Hans J. Briegel Phys. Rev. Lett 117, 130501 (2016)

Advances in quantum reinforcement learning
Vedran Dunjko, Jacob M. Taylor, Hans J. Briegel accepted to IEEE SMC 2017 (2017).




Just Grover-type speed-ups?
No... actually, most speedups are on the table...
in @ booooooring way....



One step further: embedding oracles with exponential separation

Many oracular problems can be embedded into MDPs, while
breaking some “degeneracies”
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AL

One step further: embedding oracles with exponential separation

Oracle hiding a necessary “key”

-
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Few technical steps: make sure a) oraculization goes through; b) classical hardness is

maintained.

l

5/

.

Inherited
separations

VD, Liu,Wu Taylor, arXiv:1710.11160




Open problems:
-how far this can be pushed towards practically useful
-oraculization seems far fetched



Oraculization seems a stretch?
Think of it as intermediary step...

- T
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N

Summary:
-quantum-accesible environments can be “turned” into useful oracles
-these we can access using standard quantum fricks

Caveat: Speedups are relative to a black-box model

42
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DETOUR |

What if | want to reason

Why ML/Al and QIP
~ make a perfect match

\_/

@ train here

] =
‘ W
\i fo do better

here

Pre-training will have at least two flavors...
1) reinforcement learning (slow, faster than real life)
2) optimization (find optimal patterns of behaviour)

43



DETOUR | Why are ML/AI and QIP a perfect match

Both are natural enhancers
of other technologies

new applica instrumental
for building QC devices

=T 3
g 2 s

Reinforcement & Quantum information
Machine learning processing

S

Quantum algorith™® . :
one O' the best Qranium Jask eavironaenis
applications of QC

new quantum algornithms

antam walks, state preparation

There are algorithmic
conspiracies!

Noise kills other algorithms...but
Noise is natural in ML!

Noise tolerance of problem
-better applicability to near

term devices
-helps in database loading



Reasoning and planning is hard

Part 3: “... and for some aspects of planning on small QCs”

or. Hard computational problems, Al,
and restricted quantum computers



Reinforcement learning:
Goal- achlevmg policy?

RN

training perceptrons
under noise & consistent hypothesis

T T — ———

Unsupervised learnmg
sampling from cold Boltzmann

'

Supervised learning & COLT: I

NP-hard

Combinatorial optimization & planning
playing simple games (sudoku, Lemmings)

L TTTTTTTTTITTTIITIEEE S ——,

Many problems are harder: “do | win chess”, finding good policies in (PO)MDP are PSPACE,
many games are EXPTIME, and verification of processes is undecidable...



Can quantum computers help here?

-fundamental, but...
-not believed to be in BQP - not elucidating power of quantum computing, less explored

-exponential run-times... in practice heuristics
-results studied continuously (Montanaro, Ambainis, Aaronson, etc...)

-a class of heuristics: annealers

QeML (quantum-enhanced learning) NP-problems (quantum-enhanced reasoning)
-exponential separations... -only poly-speed ups

-particularly well-matched class of applications, -a-priori, unlikely to be well-suited for

also for near term! (near-term) quantum computing

-plays well with noise, plays well
with shallow computations...




Can quantum computers help here?

-fundamental, but...

-not believed to be in BQP - not elucidating power of quantum computing, less explored
-exponential run-times... in practice heuristics

-results studied continuously (Montanaro, Ambainis, Aaronson, etc...)

-a class of heuristics: annealers

QeML (quantum-enhanced learning) NP- problems (quantum-enhanced reasoning)

-exponential separations...

-particularly well-matched class of applications,
also for near term!

-plays well with noise, plays well

with shallow computations...

: pr|or| unhkely to be well-suited fo
near-term) quantum computing

remainder of talk is in here



A general question: suppose you have a problem of size n,
and quantum computer handling m<<n qubits.
What can you do?

Could be... nothing!
Good algorithms exploit problem structure. Break it by “chunking”,

you loose (a lot of) speed. Thresholds!

An example: thresholds when quantum-enhancing a SAT solving algorithm.

VD, Ge, Cirac, arXiv:1807.08970
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SSAT
f:10,1}" —{0,1}

f(il?l, ce ,CI]n) = (CL‘l V x19 V 51_751) /N (fg V X109 V fll) YA\ (jll V Zga V a_j51) “e

" clause or constraint
and . .
all constraints have to be satisfied

1] b 1]

or

SAT problem: Is there a choice (assignment) of the variables,
such that f evaluates to 1 (“true’)



SSAT

f:{0,1}" — {0,1}

f(:l?l, e ,iEn) = (a:l V 10 V .f51) A (fg V X109 V 3_311) A («fll V Zgq V 3_351) e

Schoning:

1. Pick assignment x1,...,X, randomly.

2. Check if satisfying; output if is, and terminate

3. Find first unsatisfied clause, ‘> Do 3n times
flip any variable of the clause in the assignment

A random, gently directed, walk in the space of assignments...



SSAT

Schéning (1999): if sat. exists, the walk finds it with probability (3/4)"
Monte Carlo: (4/3)” — 2fyn’ Y = 10g2 (4/3) ~> 0415



SSAT

Schéning (1999): if sat. exists, the walk finds it with probability (3/4)"
Monte Carlo: (4/3)” — 2fyn’ Y = 10g2 (4/3) ~> 0415

Quantum Schoning / any such sampling algorithm?

Instead of sampling, amplitude amplification (Grover):

Rintime: O (277) — O*(227) = O*(274™)

How many qubits needed? Cca. 3n qubits just for purified randomness + evaluation

Ambainis ‘04

—



What if | have only enough qubits for an m-sized formula?



What if | have only enough qubits for an m-sized formula?

(CC V 10 V f’51)
Setting some variables shrinks the formula: r1 =0 ij =1
(51310 \Vi ZE51) (true)

X1,X2,X3,X4,X5,X6,X7,X8...
set free




What could | do if | have only enough qubits for an m-sized formula?

Guess some variables: X1,X2,X3,X4,X5,X6,X7,X8...
set free

1) Fix zy = 2501),- -+, To(n—m)
) must do 2" times
2) F(Z) — F* (Zyc) — solve on QC!

~~

formula of size m

How fast is this?

a=m/n
O* (9((1=a) 1 ar,)n)
‘ |

quantum



What could | do if | have only enough qubits for an m-sized formula?

Guess some variables: X1,X2,X3,X4,X5,X6,X7,X8...
set free

1) Fix zy = 2501),- -+, To(n—m)
) must do 2" times
2) F(£) — F" (Z)ve) — solve on QC!

A\ 7

~~

formula of size m

How fast is this?

a=m/n
O*(Z((l—a)-1+a-7q)n) V.S. O*(nyn)
. A y

quantum classical

'/




Naive solution - did we win? speed in ‘rate’

“brute-force” search: <+
ratey = 1
O*(2((1—a)-1—|—a-7q)n) <> O*(nyn) Y
1— ~ Schoning: |
a <> T ~ 0.73 m > 0.73n rate Yo
“Quantum” Schéning:
rateyqg |
1 } >
0 threshold 1
ratio m/n
threshold effect

other thresholds: speedup kicks in too late, e.qg.

10" x n € O(n) v.s. n* € O(n?)

Why? Problems have structure (except unstructured search)
How do you chop it up into chunks?



Can be avoided for some for certain classes of problems

-if the algorithm does not use (too much) randomness

-If the algorithm recursively calls itself or other sub-routines
(like in dynamical programming)

-If the subroutines do not depend on the original problem size

then we can use a “hybrid approach™
use classical calls, until instance small enough!



SAT solving a-la Schoning...

1) derandomized Schoning

-partition assignment space into r-balls
-solve PromiseBallSat for each

Promisel

BallSat(x,r)

NB: r will be a fraction of n



SAT solving a-la Schoning...

1) derandomized Schoning...
2) ...reduces to PromiseBallSAT



PromiseBallSat(x,r)

1. Start from x
2. Find first unsatisfied clause (or done!)

3. Recurse algorithm on flipping each of the three possibilities,

calling induced smaller formula

Non-recursive version
select S1,S89,...,8,

Check every substring

Only flip ones not flipped previously

0(3")

s

(xl VoV i’51) A (@3 VIV Lf’n> A (511 VZaV 551) .os

72 £3)

AWAWIN

DY
Fb £

Sy




SAT SOIVIng a'la SChOnIng s (331 V210V 3351) A (@3 V Z1o \/511) A (57;11 V ZTaq \/9351> e

1) derandomized Schoning...
2) ...reduces to PromiseBallSAT...
3) ...which recurses itself on smaller instance...




SAT solving a-la Schoning...

1) derandomized Schoning(n)...
2) ...reduces to PromiseBallSAT(r)...
3) ...which recurses itself on smaller r...

the “hybrid approach” for PromiseBallSAT:

1) find a quantum implementation (QPBS) which is fast, and uses few qubits (ideally )
2) Run recursive algorithm, call QPBS once r is small enough

How fast the end result is depends on
how big a » we can handle given QC of size m



Critical: #needed qubits must not depend on initial size

PromiseBallSat(x,r)—»PromiseBallSatx(r)

Key observation: only carry r trits. Could be independent from n. F1VEnVa) AR VB VEAFu VauVia) -
S 1 X/ X0 X
Only need to keep track of which bits to flip. ,‘/ ,\,‘
Only need 3 ancillas to check each clause sequentially S9 / l\ / \ / l\
Je F2 3 \"m e
QBALL, or

AN

QB! - N
S1yeeny 8p)|0Y]0) T52 sy, .nn 80) [V | F(xy))

N >

QBALL,




SAT solving a-la Schoning...

derandomized Schoning...

...reduces to PromiseBallSAT...
...which recurses itself on smaller instance...
...call size almost independent from n...

B~ oo DN -
~ — ~— ~—



Is it n-independent enough?

Main step of algorithm: keeping track of flipped variables.

51, ) [V(E)) = [s1, .., 80)|V(E + 1)) Sl/lN,

f(l) f(l) f( 3)

V(k +1) = V(k) appended with 52 / l\ / l\ / l\

(k 4+ 1)°" variable to be flipped IEEI X1t

This is where the problem structure is exploited .ér

Recall.
-when m is limited, how big “r" we can handle influences when quantum speed-ups kick in
-Interesting cases when m/n is constant

1] ”

(Zy VzyoVZs) A(Z3V Z10V Z11) A (Z1) VEgg VT5y) -+



Is it n-independent enough? actually, non-triv...

Main step of algorithm: keeping track of flipped variables.
What is V? Ordered list, then O (1 log(n))

151, ..., 8)|V(Ek)) = [s1,...,8)|V(k+1))

Problem! Effective r we can handle

Vik+1) = V(k ded with -
(k+1) = V(k) appended wi decays with log(n), when m/n is constant !

(k 4+ 1)°" variable to be flipped




Is it n-independent enough? actually, non-triv...

Main step of algorithm: keeping track of flipped variables.

151, ..., 8)|V(Ek)) = [s1,...,8)|V(k+1))

V(k+ 1) =V (k) appended with
(k 4+ 1)°" variable to be flipped

What is V? Ordered list, then O (1 log(n))

Problem! Effective r we can handle
decays with log(n), when m/n is constant !

fitis a set,need O(r log(n/r))

Now, this is an n-independent fraction!
Problem! Main step is no longer reversible!

Direct algorithmic deletion?
deletion recurses on r: exp(r) cost, no go



Solution: special memory structure and algorithmic deletion

sets of r/2
Fill &-th level
1. Filltwo k-1 levels
2. Join and copy to £ level
I sets of r/8 3. Delete two k-1 levels
Recursion of depth log(r),
SO in 29Ue9(m) ¢ poly(n
sets of r/16... )
: S
sets of /4 Time AND memory efficient!
>
log(r) depth

T — R —



Solution: special memory structure and algorithmic deletion

sets of v/2
Fill &-th level
1. Filltwo k-1 levels
2. Join and copy to £ level
I sets of r/8 3. Delete two k-1 levels
Means: given QC of size m s.t. m/n = const.
sets of 1/16... we can quantum-solve PromiseBall(r)
where r/n Is const,
sets of v/4

Leads to true speedups.

T — e

log(r) depth

T — R —



Complete algorithm: combine fastest de-randomized Schoning, which speeds-up PromiseBall.

Total complexity:

O (2(W+€_f(m/n))n) & - can be made arbitrarily small

f—(a’;)te @(Qj / IOg( w— polynomial speedup!

Final statement: quantum enhancement for de-randomized Schoning’s algorithm of Moser & Scheder
improving for any constant ratio m/n



Hard problems use structure less... and this may be an advantage for near term devices
Combined with an “Al resiliencnt to noise’-type evidence
this provides further potential Al — QIP conspiracies.
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Thank you
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