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Piater: “An unsuccessful meta-science that spawns successful scientific disciplines” 
“Catch-22: once we understand how to solve a problem, it is no longer considered 
 to require intelligence…”

Justus Piater

What is AI



Quantum Information 
Processing (QIP)Machine Learning/AI 

(ML/AI)

Quantum Machine 
Learning (QML)

Reinforcement learning and a bit “beyond” 

What is this talk about? So what is AI? All? Nothing?



Part 1: “Ask not what Reinforcement Learning can do for you” 

Part 2: “… ask what you can do for reinforcement learning…” 

Quantum environments and model-based learning 

Learning and reasoning  (actually…SAT solving)

The theory, bottlenecks and applications

Outline

Part 3: “… and for some aspects of planning on small QCs” 



Learning P(labels|data) given 
 samples from P(data,labels)

Learning structure in P(data)  
give samples from P(data)

But… what is Machine Learning?

Generalize knowledge Generate knowledge





Also: MIT technology review breakthrough technology of 2017 
[AlphaGo anyone?]
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RL more formal

Basic concepts:

Policy:
Return:

Environment:  
Markov Decision Process

Figures of merit:

finite-horizon:

infinite-horizon:

Optimality:
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Is that all?

• More complicated than it seems already in the simplest case; 
value iteration, policy search, value function approximation,  
model-free, model-based, actor-critic, Projective Simulation… 

• Infinite action/state spaces 
• Partially observable MDPs 
• Goal MDPs  
 
Knowledge transfer (and representation), Planning… 

• …AI?
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Reinforcement learning vs. supervised learning

• learning “action” - “state” associations similar to “label” - “data” association 

• how data is accessed, and how it is organized is different  

• not i.i.d, not learning a distribution, examples provided implicitly  
(delayed reward, credit assignment problems)
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RL vs. SL

Example: learning chess 

• MDP is tree-like
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Example: learning chess 

• MDP is tree-like, but not a tree 
• examples given only indirectly: credit assignment 

(unless immediate reward) 
• strong causal & temporal structure  

(agent’s actions influence the environment) 

NB: supervised learning, oracle identification, etc. 
can be cast as (degenerate) MDP learning problems 
 

RL vs. SL
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From pretty MDPs … to Using RL in Real Life 

Navigating a city…

https://sites.google.com/view/streetlearn

P. Mirowski et. al, Learning to Navigate in Cities Without a Map, arXiv:1804.00168



• via pure RL:  know only what to do in situations one encounters

• better:  generalize over personal experiences — do similar in similar situations  
(still, unlike in big data, “training set” is a near-negligible fraction…) 

• what we actually do:  generate fictitious experiences 
(“if I play X, my opponent plays Y, I play Z….”) 

conjecture: most human experiences are fictitious (tilted face problem)

So how to do RL (real life) RL



Learning unified

• via pure RL: 

• better:  generalize over  
personal experiences

• further: generate 
fictitious experiences

conjecture: most human experiences are fictitious (tilted face problem)

old-school RL

supervised learning-like

unsupervised learning-like

Slow

Doing…ok

Hard as heck



“The cake picture” for general RL/AI: unifying ML

pure RL
generalization 

(SL)
generation 

(UL)

“If intelligence was a cake, unsupervised learning would be the cake, 
supervised learning would be the icing on the cake, and reinforcement 
learning would be the cherry on the cake.” 
-Yann LeCun

even the cherry can be as complicated as you wish

Direct experience  
expensive

Can generalize (only) 
over direct experience

Can generalize over 
simulated experience?
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Progress in RL (connecting RL, SL ,and UL)

a) generalization (SL):  
associating the correct actions, to previously unseen states

⇡(a|s)
⇡✓(a|s)

⇡(a|s)
⇡✓(a|s)

function approximation

-linear models (Sutton, ’88) 
-neural networks (Lin, ’92) 
-decision trees, etc…

AlphaGodeep learning 
(+ MTCS!)

b) generation (UL): model-based learning

?



Another aspect: 

             2) generation as simulation

because real experiences can be painful  
(and expensive)
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Pre-training will have at least two flavors… 
1) reinforcement learning (slow, faster than real life) 
2) optimization (find optimal patterns of behaviour)

Both are computational bottlenecks

good AI will  
learn hierarchically  

and transfer 
the learned to a  

new domain

What I want to do when I grow up

train here

to do better 
here

Build a perfect home
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Progress in RL (connecting RL, SL ,and UL)

a) generalization (SL):  
associating the correct actions, to previously unseen states

⇡(a|s)
⇡✓(a|s)

⇡(a|s)
⇡✓(a|s)

function approximation

-linear models (Sutton, ’88) 
-neural networks (Lin, ’92) 
-decision trees, etc…

AlphaGodeep learning 
(+ MTCS!)

b) generation (UL): model-based learning

?Quantum enhancements have been
considered for both problems. 

Here we focus on b)



Part 2: … ask what you can do for reinforcement learning…



Can I RL better  if the environment is quantum? 
What are environments?



is equivalent to

…

Agents (environments) are sequences of CPTP maps, acting on a private 
and a common register - the memory and the interface, respectively. 
Memory channels = combs = quantum strategies

Agent

Envir.

Quantum Agent - Environment paradigm
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Fundamental meaning of learning in the quantum world 

Speed-ups! “faster”, “better” learning 

What can we make better? 
 
a) computational complexity      b) learning efficiency  (“genuine learning-related figures of merit”) 

su
cc

es
s 

pr
ob

ab
ili

ty
time-steps

related to query complexity

What is the motivation again?



V. Dunjko, J. M. Taylor, H. J. Briegel 
Quantum-enhanced machine learning 
Phys. Rev. Lett. 117, 130501 (2016)

Environment
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XVI. INTRO

The clear motivation for considering quantum internal processes in a an agent is to see whether such agent can
be more successful, in any sense, than a fully classical agent. By construction, a projective-simulation based agent
realizes its input-output relations by performing a random walk, that is a Markovian process, over the clips. It is
very tempting to see whether obvious generic improvements can be obtained if the particular walk is performed
in a quantum way. This is also statable in terms of a search problem, if the walk indeed performs a search. Here,
the question is ’what do we look for’? The closest result to a ’generic improvement theorem’ is given via the
(generalized) framework of Szegedy, which relates the eigenvalues of a transition matrix of an (egodic, symmetric
- this is dropped later) Markov chain, and the eigenvalues of a corresponding ’quantum walk unitary’ which is
defined in his formalism.
The found relationship between the two can be readily applied on the known results for the classical hitting

time of some subset of the nodes (the marked nodes) of the Markov chain (which has expected hitting time in
O(1/�✏), with � being the spectral gap of the transition matrix, and ✏ the fraction of marked nodes vs. all nodes),
and the analogous quantum hitting time which scales as O(1/

p
�✏) - this yields a type of generic improvement.

Motivation story for the talk: Sure, getting an exponential speedup is much cooler than getting a quadratic one.
In the problems we address we talk about agents, which are abstractions of entities which exist, and interact with
an environment. And they do so in real time. So let us consider an agent, and a setting where reaction time is
important, and see what happens if we, ’only’ quadratically, slow down the agent. We will do this by solving a
cartoon Fermi problem. Consider a particular agent: a mouse. A mouse can find itself in tricky situations, like
being stalked by a cat. And the moment it notices a cat it must respond as fast as it can. A non-super-athletic
mouse can escape a cats attack if he spots the charging cat from a distance of say 1m. If he spots the cat later,
he’s a goner. Given that your average charging cat runs at 10m/s, this implies the mouses deliberation time must
be 0.1s. Suppose the mouse was quadratically slower. Let us give meaning to this assumption. A mouse has 1011

synapses, and say 100km of total axon length in its brain. This gives the average e↵ective axon length of 10�6m. A
neural pulse travels at, on average, at 50m/s, say a lower bound of 10m/s, which yields that in a second a mouse’s
pulses can traverse 107 average axonic lengths. Since his deliberation time is 0.1s, in deliberation, the mouse’s
neurons traverse 106 axonic lengths. A quadratically slower mouse will have to traverse 1012 axonic lengths to
’jump into action’. The time it takes him to do this is 1012⇥10�8 = 104s. Well, the average cat can travel 100 km
in this time, meaning, if the mouse is in the center of Innsbruck, and he spots a charging cat which is in Bolzano,
he is a goner! If the cat has a train pass, the mouse can spot the cat in Salzburg while the cat is boarding the
train to Innsbruck, and still the cat will munch him.

XVII. DIRECT QUANTIZATION OF THE ’SIMPLE PS’ APPROACH

A. The need for a ’fair comparison’ of agents

As mentioned, one of the central ideas of this project is to use quantum walk-base approaches to produce ’better’
agents than classically possible. Since quantum walks have di↵erent, and sometimes clearly better properties than
classical walks, this should be possible. In particular, there seems to be a generic speedup of hitting times in
quantized versions of Markov chains. And this is attractive. A noted criticism is that even if one produces an
agent which ’walks faster’ this does not incur ’faster learning’ times in terms of ’external time’ - that is, if the
agent has all the time in the world to produce his response to the environment, then such a generic speedup is not
useful. However, this can be remedied by considering ’active learning’ - a process in which external and internal
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Quantum-enhanced quantum-accesible RL

speeding up classical interaction 
is like Groverizing an old-school telephone book..



Agent-like Environment-like

think of Environment as Oracle

Quantum-enhanced access: 
Inspiration from oracular quantum computation…



Agent-like Environment-like

Use “quantum access” to oracle to learn useful information faster

Quantum-enhanced access: 
Inspiration from oracular quantum computation…



But… environments are not like standard oracles…

“Oraculization” 
(taming the open environment)

(blocking, accessing purification and recycling)

strict generalization
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(Semi-)classical agent-environment

Maze:

Agent

Environment

Agent

|a1, . . . , aM i ! |s1, . . . , sM+1iA|a1, . . . , aniE
|a1, . . . , aM i ! |a1, . . . , aniE

|a1, . . . , aM i0iA ! |a1, . . . , aM iA|??iA

Have:

Want e.g.:

Why? Grover search for “best actions”

| !, #, #,!ii.e.. convert environment to reflection about 



(Semi-)classical agent-environment

Maze:

Agent

Environment

Agent

|a1, . . . , aM i ! |s1, . . . , sM+1iA|a1, . . . , aniE
|a1, . . . , aM i ! |a1, . . . , aniE

|a1, . . . , aM i0iA ! |a1, . . . , aM iA|??iA

Have:

Want e.g.:

How? Oraculization



1)

2)

3)

Oraculization (blocking) 
(taming the open environment)

quantum comb

causal network

“blocking”
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Oraculization (recovery and recycling) 
(taming the open environment)

Classically specified oracle

f

“quantization”



(A flavour of) quantum-enhanced reinforcement learning  

A few results:

Oraculization

 Learning speedup in luck-favoring environments  
 quadratic improvements in meta-learning 

Advances in quantum reinforcement learning 
Vedran Dunjko, Jacob M. Taylor, Hans J. Briegel accepted to IEEE SMC 2017 (2017). 

Quantum-enhanced machine learning 
Vedran Dunjko, Jacob M. Taylor, Hans J. Briegel Phys. Rev. Lett 117, 130501 (2016)

Grover-like amplification for optima:



Just Grover-type speed-ups? 
No… actually, most speedups are on the table… 
in a booooooring way…. 



One step further: embedding oracles with exponential separation

Many oracular problems can be embedded into MDPs, while 
breaking some “degeneracies”



oraculization 
process 

Oracle hiding a necessary “key”

Inherited 
separations

Few technical steps: make sure a) oraculization goes through; b) classical hardness is 
maintained.

VD, Liu,Wu Taylor, arXiv:1710.11160

One step further: embedding oracles with exponential separation



Open problems: 
-how far this can be pushed towards practically useful 
-oraculization seems far fetched
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Caveat: Speedups are relative to a black-box model

Summary:  
-quantum-accesible environments can be “turned” into useful oracles 
-these we can access using standard quantum tricks

Oraculization seems a stretch?  
Think of it as intermediary step… 

train here

to do better 
here

Build a perfect home
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Why ML/AI and QIP  
make a perfect match

What if I want to reason 
over my model



Why are ML/AI and QIP a perfect match

Both are natural enhancers 
of other technologies

There are algorithmic  
conspiracies!

Noise kills other algorithms…but 
Noise is natural in ML! 

Noise tolerance of problem 

-better applicability to near 
term devices 

-helps in database loading 
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or: Hard computational problems, AI,  
and restricted quantum computers 

Reasoning and planning is hard

Part 3: “… and for some aspects of planning on small QCs” 



Reinforcement learning:  
Goal-achieving policy?

Supervised learning & COLT:  
training perceptrons  

under noise & consistent hypothesis

Unsupervised learning:  
sampling from cold Boltzmann

Combinatorial optimization & planning 
playing simple games (sudoku, Lemmings)

Many problems are harder: “do I win chess”, finding good policies in (PO)MDP are PSPACE, 
many games are EXPTIME, and verification of processes is undecidable…

NP-hard



Can quantum computers help here? 

-fundamental, but… 
-not believed to be in BQP - not elucidating power of quantum computing, less explored 
-exponential run-times… in practice heuristics 
-results studied continuously (Montanaro, Ambainis, Aaronson, etc…) 
-a class of heuristics: annealers

QeML (quantum-enhanced learning)  
-exponential separations… 
-particularly well-matched class of applications, 
also for near term! 
-plays well with noise, plays well  
with shallow computations…

NP-problems (quantum-enhanced reasoning) 
-only poly-speed ups 
-a-priori, unlikely to be well-suited for  
(near-term) quantum computing 



Can quantum computers help here? 

-fundamental, but… 
-not believed to be in BQP - not elucidating power of quantum computing, less explored 
-exponential run-times… in practice heuristics 
-results studied continuously (Montanaro, Ambainis, Aaronson, etc…) 
-a class of heuristics: annealers

QeML (quantum-enhanced learning)  
-exponential separations… 
-particularly well-matched class of applications, 
also for near term! 
-plays well with noise, plays well  
with shallow computations…

NP-problems (quantum-enhanced reasoning) 
-only poly-speed ups 
-a-priori, unlikely to be well-suited for  
(near-term) quantum computing 

remainder of talk is in here



A general question: suppose you have a problem of size n,  
and quantum computer handling m<<n qubits.  

What can you do?

Could be… nothing!  
Good algorithms exploit problem structure. Break it by “chunking”,  
you loose (a lot of) speed. Thresholds! 

An example: thresholds when quantum-enhancing a SAT solving algorithm.

VD, Ge, Cirac, arXiv:1807.08970



f(x1, . . . , xn) = C1 ^ C2 ^ · · ·Ck ^ · · ·CL

Ck = (u _ v _ w), u, v, w 2 {x1, . . . , xn} [ {x̄1, . . . , x̄n}

f(x1, . . . , xn) = (x1 _ x10 _ x̄51) ^ (x̄3 _ x̄10 _ x̄11) ^ (x̄11 _ x̄44 _ x̄51) · · ·

f : {0, 1}n ! {0, 1}

3SAT

(x1 _ x4 _ x10)| {z }
clause or constraint 
all constraints have to be satisfied 

" "
“or” “and”

SAT problem: Is there a choice (assignment) of the variables,  
such that f evaluates to 1 (“true”)



f(x1, . . . , xn) = C1 ^ C2 ^ · · ·Ck ^ · · ·CL

Ck = (u _ v _ w), u, v, w 2 {x1, . . . , xn} [ {x̄1, . . . , x̄n}

f(x1, . . . , xn) = (x1 _ x10 _ x̄51) ^ (x̄3 _ x̄10 _ x̄11) ^ (x̄11 _ x̄44 _ x̄51) · · ·

Schöning:

1. Pick assignment                             randomly. 9? x1, . . . , xn s.t. f(x1, . . . , xn) = 1

3. Find first unsatisfied clause,  
   flip any variable of the clause in the assignment 

2. Check if satisfying; output if is, and terminate 
Do 3n times

A random, gently directed, walk in the space of assignments… 

f : {0, 1}n ! {0, 1}

3SAT



Schöning (1999): if sat. exists, the walk finds it with probability (3/4)n

(4/3)n = 2

�n, � = log2(4/3) ⇡ 0.415...

(3/4)n

(4/3)n = 2

�n, � = log2(4/3) ⇡ 0.415...Monte Carlo:

3SAT



Quantum Schöning / any such sampling algorithm?

Instead of sampling, amplitude amplification (Grover):

Run-time: O⇤(2�n) ! O⇤(2
�
2 n)

How many qubits needed? Cca. 3n qubits just for purified randomness + evaluation

= O⇤(2�qn)

Ambainis ‘04

Schöning (1999): if sat. exists, the walk finds it with probability (3/4)n

(4/3)n = 2

�n, � = log2(4/3) ⇡ 0.415...

(3/4)n

(4/3)n = 2

�n, � = log2(4/3) ⇡ 0.415...Monte Carlo:

3SAT



What if I have only enough qubits for an m-sized formula? 



What if I have only enough qubits for an m-sized formula? 
f(x1, . . . , xn) = C1 ^ C2 ^ · · ·Ck ^ · · ·CL

Ck = (u _ v _ w), u, v, w 2 {x1, . . . , xn} [ {x̄1, . . . , x̄n}

f(x1, . . . , xn) = (x1 _ x10 _ x̄51) ^ (x̄3 _ x̄10 _ x̄11) ^ (x̄11 _ x̄44 _ x̄51) · · ·
x1 = 0

(x10 _ x̄51)

x1 = 1

(true)
x1 = 0

(x10 _ x̄51)

x1 = 1

(true)

Setting some variables shrinks the formula:

x1,x2,x3,x4,x5,x6,x7,x8…(x1 _ x4 _ x10)| {z } (x1 _ x4 _ x10)| {z }
set free



F (~x) ! F

xv (~x|V c)
(x1 _ x4 _ x10)| {z }

formula of size m

Fix xV = x�(1), . . . , x�(n�m)

# solve on QC!

1) 

2)
must do 2n�m

times

What could I do if I have only enough qubits for an m-sized formula? 

Guess some variables:

= O⇤(2((1�↵)·1+↵·�q)n)

↵ = m/n

How fast is this?

(x1 _ x4 _ x10)| {z }
quantum

x1,x2,x3,x4,x5,x6,x7,x8…(x1 _ x4 _ x10)| {z } (x1 _ x4 _ x10)| {z }
set free



= O⇤(2((1�↵)·1+↵·�q)n)

↵ = m/n

v.s. O⇤(2�n) ! O⇤(2
�
2 n)

How fast is this?

What could I do if I have only enough qubits for an m-sized formula? 

Guess some variables:

(x1 _ x4 _ x10)| {z } (x1 _ x4 _ x10)| {z }

quantum classical

F (~x) ! F

xv (~x|V c)
(x1 _ x4 _ x10)| {z }

formula of size m

Fix xV = x�(1), . . . , x�(n�m)

# solve on QC!

1) 

2)
must do 2n�m

times

x1,x2,x3,x4,x5,x6,x7,x8…(x1 _ x4 _ x10)| {z } (x1 _ x4 _ x10)| {z }
set free



Naïve solution - did we win? 

threshold effect 
other thresholds: speedup kicks in too late, e.g. 

1015 ⇥ n 2 O(n) v.s. n2 2 O(n2)

Why? Problems have structure (except unstructured search) 
How do you chop it up into chunks?

= O⇤(2((1�↵)·1+↵·�q)n) O⇤(2�n) ! O⇤(2
�
2 n)

m > 0.73n

<>

↵ <>
1� �

1� �
2

⇡ 0.73

“brute-force” search: 
rate γ = 1

Schöning: 
rate γc

“Quantum” Schöning: 
rate γq

speed in “rate”

ratio m/n
0 1threshold



Can be avoided for some for certain classes of problems

-if the algorithm does not use (too much) randomness 

-If the algorithm recursively calls itself or other sub-routines  
(like in dynamical programming) 

-If the subroutines do not depend on the original problem size

then we can use a “hybrid approach”: 
use classical calls, until instance small enough!



SAT solving a-la Schöning…

1) derandomized Schöning

-partition assignment space into r-balls
-solve PromiseBallSat for each

PromiseBallSat(x,r)→

r

NB: r will be a fraction of n



1) derandomized Schöning… 
2) …reduces to PromiseBallSAT

SAT solving a-la Schöning…



1. Start from x 
2. Find first unsatisfied clause (or done!) 
3. Recurse algorithm on flipping each of the three possibilities, 
calling induced smaller formula 
 

f(x1, . . . , xn) = C1 ^ C2 ^ · · ·Ck ^ · · ·CL

Ck = (u _ v _ w), u, v, w 2 {x1, . . . , xn} [ {x̄1, . . . , x̄n}

f(x1, . . . , xn) = (x1 _ x10 _ x̄51) ^ (x̄3 _ x̄10 _ x̄11) ^ (x̄11 _ x̄44 _ x̄51) · · ·

f(x1, . . . , xn) = C1 ^ C2 ^ · · ·Ck ^ · · ·CL

Ck = (u _ v _ w), u, v, w 2 {x1, . . . , xn} [ {x̄1, . . . , x̄n}

f(x1, . . . , xn) = (x1 _ x10 _ x̄51) ^ (x̄3 _ x̄10 _ x̄11) ^ (x̄11 _ x̄44 _ x̄51) · · ·

f (1)

f (2)

f (3)

f (1,1)

f (1,2)

f (1)

f (2)

f (3)

f (1,1)

f (1,2)

f (1)

f (2)

f (3)

f (1,1)

f (1,2)

f (1)

f (2)

f (3)

f (1,1)

f (1,2)

f (1)

f (2)

f (3)

f (1,1)

f (1,2) …

s1

s2
...

sr

s1

s2
...

sr

s1

s2
...

sr

s1

s2
...

sr

Non-recursive version 
select  
 

s1, s2, . . . , sr

3rCheck every substring 

Only flip ones not flipped previously

O(3r)

PromiseBallSat(x,r) →

x1 x10 x51

x3 x11x10



1) derandomized Schöning… 
2) …reduces to PromiseBallSAT… 
3) …which recurses itself on smaller instance…

SAT solving a-la Schöning…

f(x1, . . . , xn) = C1 ^ C2 ^ · · ·Ck ^ · · ·CL

Ck = (u _ v _ w), u, v, w 2 {x1, . . . , xn} [ {x̄1, . . . , x̄n}

f(x1, . . . , xn) = (x1 _ x10 _ x̄51) ^ (x̄3 _ x̄10 _ x̄11) ^ (x̄11 _ x̄44 _ x̄51) · · ·

f(x1, . . . , xn) = C1 ^ C2 ^ · · ·Ck ^ · · ·CL

Ck = (u _ v _ w), u, v, w 2 {x1, . . . , xn} [ {x̄1, . . . , x̄n}

f(x1, . . . , xn) = (x1 _ x10 _ x̄51) ^ (x̄3 _ x̄10 _ x̄11) ^ (x̄11 _ x̄44 _ x̄51) · · ·

f (1)

f (2)

f (3)

f (1,1)

f (1,2)

f (1)

f (2)

f (3)

f (1,1)

f (1,2)

f (1)

f (2)

f (3)

f (1,1)

f (1,2)

f (1)

f (2)

f (3)

f (1,1)

f (1,2)

f (1)

f (2)

f (3)

f (1,1)

f (1,2) …

s1

s2
...

sr

s1

s2
...

sr

s1

s2
...

sr

s1

s2
...

sr



1) derandomized Schöning(n)… 
2) …reduces to PromiseBallSAT(r)… 
3) …which recurses itself on smaller r…

SAT solving a-la Schöning…

f(x1, . . . , xn) = C1 ^ C2 ^ · · ·Ck ^ · · ·CL

Ck = (u _ v _ w), u, v, w 2 {x1, . . . , xn} [ {x̄1, . . . , x̄n}

f(x1, . . . , xn) = (x1 _ x10 _ x̄51) ^ (x̄3 _ x̄10 _ x̄11) ^ (x̄11 _ x̄44 _ x̄51) · · ·

f(x1, . . . , xn) = C1 ^ C2 ^ · · ·Ck ^ · · ·CL

Ck = (u _ v _ w), u, v, w 2 {x1, . . . , xn} [ {x̄1, . . . , x̄n}

f(x1, . . . , xn) = (x1 _ x10 _ x̄51) ^ (x̄3 _ x̄10 _ x̄11) ^ (x̄11 _ x̄44 _ x̄51) · · ·

f (1)

f (2)

f (3)

f (1,1)

f (1,2)

f (1)

f (2)

f (3)

f (1,1)

f (1,2)

f (1)

f (2)

f (3)

f (1,1)

f (1,2)

f (1)

f (2)

f (3)

f (1,1)

f (1,2)

f (1)

f (2)

f (3)

f (1,1)

f (1,2) …

s1

s2
...

sr

s1

s2
...

sr

s1

s2
...

sr

s1

s2
...

sr

the “hybrid approach” for PromiseBallSAT: 

1) find a quantum implementation (QPBS) which is fast, and uses few qubits (ideally r)  
2) Run recursive algorithm, call QPBS once r is small enough

How fast the end result is depends on
how big a r we can handle given QC of size m



Critical: #needed qubits must not depend on initial size

PromiseBallSat(x,r)→PromiseBallSatx(r) → →

Only need to keep track of which bits to flip.  
Only need 3 ancillas to check each clause sequentially

Key observation: only carry r trits. Could be independent from n.



1) derandomized Schöning… 
2) …reduces to PromiseBallSAT… 
3) …which recurses itself on smaller instance… 
4) …call size almost independent from n…

SAT solving a-la Schöning…



|s1, . . . , sri|V (k)i ! |s1, . . . , sri|V (k + 1)i
V (k + 1) = V (k) appended with (k + 1)

st
variable to be flipped

Main step of algorithm: keeping track of flipped variables.

Is it n-independent enough?

|s1, . . . , sri|V (k)i ! |s1, . . . , sri|V (k + 1)i
V (k + 1) = V (k) appended with (k + 1)

st
variable to be flipped

|s1, . . . , sri|V (k)i ! |s1, . . . , sri|V (k + 1)i
V (k + 1) = V (k) appended with (k + 1)

st
variable to be flipped

Recall:  
-when m is limited, how big “r” we can handle influences when quantum speed-ups kick in 
-interesting cases when m/n is constant 

This is where the problem structure is exploited



|s1, . . . , sri|V (k)i ! |s1, . . . , sri|V (k + 1)i
V (k + 1) = V (k) appended with (k + 1)

st
variable to be flipped

Main step of algorithm: keeping track of flipped variables.

|s1, . . . , sri|V (k)i ! |s1, . . . , sri|V (k + 1)i
V (k + 1) = V (k) appended with (k + 1)

st
variable to be flipped

|s1, . . . , sri|V (k)i ! |s1, . . . , sri|V (k + 1)i
V (k + 1) = V (k) appended with (k + 1)

st
variable to be flipped

What is V? Ordered list, then O(r log(n))

Problem! Effective r we can handle  
decays with log(n), when m/n is constant ! 

Is it n-independent enough? actually, non-triv…



|s1, . . . , sri|V (k)i ! |s1, . . . , sri|V (k + 1)i
V (k + 1) = V (k) appended with (k + 1)

st
variable to be flipped

Main step of algorithm: keeping track of flipped variables.

|s1, . . . , sri|V (k)i ! |s1, . . . , sri|V (k + 1)i
V (k + 1) = V (k) appended with (k + 1)

st
variable to be flipped

|s1, . . . , sri|V (k)i ! |s1, . . . , sri|V (k + 1)i
V (k + 1) = V (k) appended with (k + 1)

st
variable to be flipped

What is V? Ordered list, then O(r log(n))

If it is a set, need 

Problem! Effective r we can handle  
decays with log(n), when m/n is constant ! 

O(r log(n/r))

Now, this is an n-independent fraction!
Problem! Main step is no longer reversible! 
 
Direct algorithmic deletion? 
deletion recurses on r: exp(r) cost, no go

Is it n-independent enough? actually, non-triv…



Solution: special memory structure and algorithmic deletion

sets of r/2

sets of r/4

sets of r/8

sets of r/16…

log(r) depth

Fill k-th level: 
1. Fill two k-1 levels 
2. Join and copy to kth level 
3. Delete two k-1 levels

Recursion of depth log(r), 
so in 2O(log(n)) 2 poly(n)

Time AND memory efficient!



Solution: special memory structure and algorithmic deletion

sets of r/2

sets of r/4

sets of r/8

sets of r/16…

log(r) depth

Fill k-th level: 
1. Fill two k-1 levels 
2. Join and copy to kth level 
3. Delete two k-1 levels

Means: given QC of size m s.t. m/n = const. 
we can quantum-solve PromiseBall(r) 
where r/n is const. 
Leads to true speedups.



Complete algorithm: combine fastest de-randomized Schöning, which speeds-up PromiseBall. 

Total complexity:

O⇤
(2

(�+"�f(m/n))n
)

f(x) 2 ⇥(x/ log(1/x))

Final statement: quantum enhancement for de-randomized Schöning’s algorithm of Moser & Scheder  
improving for any constant ratio m/n

ε - can be made arbitrarily small  
polynomial speedup! 



Hard problems use structure less… and this may be an advantage for near term devices 
Combined with an “AI resiliencnt to noise”-type evidence  

this provides further potential  AI — QIP conspiracies. 
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Thank you


