
Optimization for Machine Learning:
Beyond Stochastic Gradient Descent

Elad Hazan

Based on:
[Agarwal, Bullins, Hazan ICML ’16]
[Agarwal, Allen-Zhu, Bullins, Hazan, Ma STOC ’17]
[Hazan, Singh, Zhang ICML ‘17], [Agarwal, Hazan COLT ‘17]
[Agarwal, Bullins, Chen, Hazan, Singh, Zhang, Zhang ’18]

References and more info:
http://www.cs.princeton.edu/~ehazan/tutorial/MLSStutorial.htm

Princeton-Google Brain team

Naman Agarwal, Brian Bullins, Xinyi Chen,
Karan Singh, Cyril Zhang, Yi Zhang

Distribution over
vectors
{a} ∈ $%

Function of vectors
&'()*+,-(/)

Chair/car

Model
parameters

Deep net, SVM,
boosted decision

stump,…

What is Optimization

But generally speaking...

We’re screwed.
! Local (non global) minima of f0

! All kinds of constraints (even restricting to continuous functions):

h(x) = sin(2πx) = 0

−3
−2

−1
0

1
2

3

−3
−2

−1
0

1
2

3
−50

0

50

100

150

200

250

Duchi (UC Berkeley) Convex Optimization for Machine Learning Fall 2009 7 / 53

Minimize incorrect chair/car
predictions on training set This talk: faster optimization

1. second order methods
2. adaptive regularization

Distribution over
{"} ∈ ℝ& Label

Model

minimize
,∈ℝ-

. / , . / = 1
34

567

8
ℓ5 /, "5, :5

(Non-Convex) Optimization in ML

Training set size (m) & dimension of data (d) are very large, days/weeks to train

Given first-order oracle: !" # , !" # ≤ &

Iteratively: #'() ← #' − ,!" #'

Theorem: for smooth bounded functions, step size , ∼ . 1 (depends on
smoothness),

1
01'

!" #' 2 ∼ 1
0

Gradient Descent

Stochastic Gradient Descent [Robbins & Monro ‘51]

Given stochastic first-order oracle: ! "#$ % = #$ % , ! "#$ % (≤ *(

Iteratively: %+,- ← %+ − 0"#$ %+

Theorem [GL’15]: for smooth bounded functions, step size 0 = -
123 ,

1
56+

#$ %+ (∼ *(

5

SGD

!"#$ ←
!" − '"

⋅)*+ !"

SGD++
Variance Reduction
[Le Roux, Schmidt, Bach ‘12]
…

Momentum
[Nesterov ‘83],…

Adaptive Regularization
[Duchi, Hazan, Singer ‘10],…

!"#$ ← !" − '" ⋅)*+ !"

Are we at the limit ? Woodworth,Srebro ‘16: yes!
(gradient methods)

Rosenbrock function

Higher Order Optimization

• Gradient Descent – Direction of Steepest Descent
• Second Order Methods – Use Local Curvature

Newton’s method (+ Trust region)

!"

!#

!$

!%&" = !% −) [+#,(!)]0" +,(!)

For non-convex function: can move to ∞
Solution: solve a quadratic approximation in a
local area (trust region)

Newton’s method (+ Trust region)

!"

!#

!$

!%&" = !% −) [+#,(!)]0" +,(!)

1. d3 time per iteration, Infeasible for ML!!
2. Stochastic difference of gradients ≠ hessian

Till recently J

Speed up the Newton direction computation??

• Spielman-Teng ‘04: diagonally dominant systems of equations in
linear time!
• 2015 Godel prize
• Used by Daitch-Speilman for faster flow algorithms
• Faster/simpler by Srivasatva, Koutis, Miller, Peng, others…

• Erdogu-Montanari ‘15: low rank approximation & inversion by
Sherman-Morisson
• Allow stochastic information
• Still prohibitive: rank * d2

Our results – Part 1 of talk

• Natural Stochastic Newton Method
• Every iteration in O(d) time. Linear in Input Sparsity
• Couple with Matrix Sampling/ Sketching techniques - Best known running

time for ! ≫ # for both convex and non-convex opt., provably faster than
first order methods

Stochastic Newton?
(convex case for illustration)

• ERM, rank-1 loss: argmin
'
()∼ + [ℓ ./0), 2) +

4

5
|.|5]

• unbiased estimator of the Hessian:

785 = a:a:
; ⋅ ℓ′ ./0), b: + ? @ ~ B[1,… ,E]

• clearly (785 = 85G , but (785
H4

≠ 85G H4

.JK4 = .J − M [8
5G(.)]H4 8G(.)

PQ

Single example

Vector-vector

products only

For any distribution on

naturals i ∼ #

Circumvent Hessian creation and inversion!

• 3 steps:

• (1) represent Hessian inverse as infinite series

$%& = (
)*+ ,- .

/ − $&)

• (2) sample from the infinite series (Hessian-gradient product) , ONCE

$&1%2$1 =(
)
/ − $&1) $f = 4)∼5 / − $&1) $f ⋅ 1

Pr[;]

• (3) estimate Hessian-power by sampling i.i.d. data examples

= E)∼5,?∼[)] @
?*2 ,-)

/ − $&1? $f ⋅
1

Pr[;]

Improved Estimator

• Previously, Estimate a single term in one estimate

!"# = % + (% − !)(% + % − ! (% + *… .
-. /

))

• Recursive Reformulation of the series

• Truncate after 0 steps. Typically 0 ~ 2 (condition # of f)

!"# = % + (% − !)(% + % − ! (% + *… .
-. 3

))!"# = % + (% − !)(% + % − ! % + … .
456789:;5 59-:<=-5 >?@AB

AB

)!3
"# = % + (% − !

CDE. 3=<FG5
)(>!3"#

"#)

• H >!3
"# → !"# as 0 → ∞

• Repeat and average to reduce the variance

LiSSA
Linear-time Second-order Stochastic Algorithm

arg min
'∈)*

+ ,∼. [ℓ 123,, 5, +
1
2
|1|:]

• Compute a full (large batch) gradient ;f

• Use the estimator =;>:?;? defined previously & move there

Theorem 1: For large t, LiSSA returns a point in the parameter space @A s.t.

? @A ≤ ? @∗ + D

In total time log G
H
I (K + L M N)

à (w. more tricks) PL log: G
H
I K + MI , fastest known! (& provably faster 1st order WS ’16)

V is a bound on the variance
of the estimator

• In Practice - a small
constant (e.g. 1)
• In Theory - N ≤ M:

Hessian Vector Products for Neural Networks

in time ! " ($%&'()**%& +&,-.)

• 01 - computed via a differentiable circuit of size !(")

• 201 - computed via a differentiable circuit of size O(d)
(Backpropagation)

• Define 31 ℎ = 201 ℎ 67

2 3 ℎ = 2801 ℎ 7

• There exists a !(") circuit computing 2801 ℎ 7

2809:20 = E1∼=,?∼[1] B
?C: DE 1

F − 280? 2f ⋅
1

Pr[,]

LiSSA for non-convex (FastCubic)

Method Time to
| "#(%)| ≤ (
(Oracle)

Time to
| "#(%)| ≤ (
(Actual)

Second Order? Assumption

Gradient Descent
(Folklore)) *+

,-) ./
,-

N/A Smoothness

Stochastic Gradient
Descent (Folklore)) *0+1

,2) /
,2

N/A Smoothness

Noisy SGD (Ge et al)) /34
,2 5-6 ℎ ≽ −,

:
3; < Smoothness

Cubic Regularization
(Nesterov & Polyak) =) > /?@: + /?

,:.C
5-6 ℎ ≽ −,

:
- < Smooth and Second

Order Lipschitz

Fast Cubic) *+
,:.C +

*D
,:.EC) ./

,:.EC 5-6 ℎ ≽ −,
:
- < Smooth and Second

Order Lipschitz

2nd order information: new phenomena?

• ”Computational lens for deep nets”:
experiment with 2nd order information…
• Trust region
• Cubic regularization, eigenvalue methods….

• Multiple hurdles:
• Global optimization is NP-hard, even deciding whether

you are at a local minimum is NP-hard
• Goal: local minimum | "# ℎ | ≤ &

and "'# ℎ ≽ − & *

Bengio-group experiment

What is Optimization

But generally speaking...

We’re screwed.
! Local (non global) minima of f0

! All kinds of constraints (even restricting to continuous functions):

h(x) = sin(2πx) = 0

−3
−2

−1
0

1
2

3

−3
−2

−1
0

1
2

3
−50

0

50

100

150

200

250

Duchi (UC Berkeley) Convex Optimization for Machine Learning Fall 2009 7 / 53

Experimental Results

Convex: clear
improvements

Neural networks: doesn’t
improve upon SGD

What goes wrong?

Adaptive Regularization Strikes Back

Princeton Google Brain team: Naman Agarwal, Brian Bullins, Xinyi Chen, Elad Hazan,
Karan Singh, Cyril Zhang, Yi Zhang

(GG
T)-1/2

Adaptive Preconditioning

● Newton’s method special case of preconditioning: make loss surface
more isotropic

! " ↦ ! $"

!

"

Modern ML is SGD++

Variance Reduction
[Le Roux, Schmidt, Bach ‘12]
…

Momentum
[Nesterov ‘83],…

Adaptive Regularization
[Duchi, Hazan, Singer ‘10],…

!"#$ ← !" − '" ⋅)*+ !"

Adaptive Optimizers

- Each coordinate ! " gets a learning rate #$ "
#$["] chosen “adaptively” using '() !*:$ ["] - ,*:$["]

- AdaGrad: -$ " ≔ *
∑0123 40 5 6

- RMSprop: -$ " ≔ *
∑0123 7380 40 5 6

- Adam: -$ " ≔ *

*973 ∑0123 7380 40 5 6

What about the other AdaGrad?

full-matrix preconditioning
> " #$ time per iteration

diagonal preconditioning
" # time per iteration

%&'(← %& − +
,-(

&
.,.,/

0(/$

⋅ .&%&'(← %& − #34. +
,-(

&
.,.,/

0(/$

⋅ .&

What does adaptive regularization even do?!

● Convex, full-matrix case: [Duchi-Hazan-Singer ‘10]: “best regularization in hindsight”

!
"
#" $" − $∗ = (min,- . /0 !

"
#" .1

● Diagonal version: up to
2
0 improvement upon SGD (in optimization AND generalization)

● No analysis for non-convex optimization, till recently (still no speedup vs. SGD)

○ Convergence: [Li, Orabona ‘18], [Ward, Wu, Bottou ‘18]

The Case for Full-Matrix Adaptive Regularization

● GGT, a new adaptive optimizer
● Efficient full-matrix (low-rank) AdaGrad

● Theory: “Adaptive” convergence rate on convex & non-convex !
Up to " #

$ faster than SGD!

● Experiments: viable in the deep learning era
● GPU-friendly; not much slower than SGD on deep models
● Accelerates training in deep learning benchmarks
● Empirical insights on anisotropic loss surfaces, real and synthetic

The GGT Algorithm

● SGD: !"#$ ← !" − '" ⋅)"
● AdaGrad: !"#$ ← !" − diag ∑/0$")/1 2$/1 ⋅)"
● Full-Matrix AdaGrad: !"#$ ← !" − ∑/0$")/)/4 2$/1 ⋅)"
● GGT: !"#$ ← !" − 5"5"4 2$/1 ⋅)"

5" =)" 7)"2$ 71)"21 ⋯ 792$)"29#$

: ≈ 200

> ≈ 10@

Why a low-rank preconditioner?

● Answer 1: want to forget stale gradients (like Adam)
● Synthetic experiments: logistic regression, polytope analytic center

! × ! #$% = ! × ! × ! #'% × !

The GGT speedup

The GGT speedup

Matrix ops: ! "#$
Huge SVD: ! #%

Matrix ops: ! "$#
Tiny SVD: ! "%

Large-Scale Experiments (CIFAR-10, PTB)

Visualizing Gradient Spectra
eigs %&'%&
@) = 150

26-layer ResNet
CIFAR-10

3-layer LSTM
Penn Treebank

(char-level)

Theory: faster convergence vs. non-convex SGD

- Convex: ! "# ≤ argmin+ ! " + - in . /0
10 steps

- Non-convex: ∃3: 5! "6 ≤ - within . 7
10 convex epochs

- Reduction via modified descent lemma:

"687

! "6 + 5! " , " − "6
+ ; " − "6 < ≥ ! "

"6

"687

! " + 2; " − "6 < ≥ ! "

"6

Minimize 1/-< times: Minimize 1/-< times:

The Ratio of Adaptivity

● Define the adaptivity ratio !:

!" ≔ ∑%&'()%*+
"

∑%&'()%,+-
" = AdaGrad regret

worst−case OGD regret

● [DHS10]: ! ≤ '
> , @ for diag-AdaGrad, sometimes smaller for full AdaGrad

● Strongly convex losses: GGT* converges in AB CDED
F steps

● Non-convex reduction: GGT* converges in AB CDED
FG steps

● First step towards analyzing adaptive methods in non-convex optimization

A note on the important parameters

● A lot of work on improving dependence on !

● Recent state-of-the-art in SGD++: "#$ →
"
#&.(

● In practice:) ∼ 0.1, improvement amounts to factor 10 ∼ 3.1

● Our improvement ".$ →
/0
.$: can be as large as 1

(3 ∼ 104 for language models!)

● Huge untapped potential: characterize the ratio of adaptivity!

Summary

1. Special characteristics of stochastic optimization in ML
2. Second order methods in linear time
• LiSSA : fastest running time for convex ML
• Non-convex – different solution concept

FastCubic: faster than gradient descent!
3. Adaptive regularization strikes again:

• full-matrix AR in linear time
• Dimension-scale improvements possible, visible in experiments

4. Opportunity to improve factors of dimension rather than
approximation

