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What is Optimization

But generally speaking...

We’re screwed.
! Local (non global) minima of f0

! All kinds of constraints (even restricting to continuous functions):

h(x) = sin(2πx) = 0
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Minimize incorrect chair/car 
predictions on training set This talk: faster optimization

1. second order methods
2. adaptive regularization
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(Non-Convex) Optimization in ML

Training set size (m) & dimension of data (d) are very large, days/weeks to train



Given first-order oracle: !" # , !" # ≤ &

Iteratively: #'() ← #' − ,!" #'

Theorem: for smooth bounded functions, step size , ∼ . 1 (depends on 
smoothness),

1
01'

!" #' 2 ∼ 1
0

Gradient Descent



Stochastic Gradient Descent  [Robbins & Monro ‘51]

Given stochastic first-order oracle: ! "#$ % = #$ % , ! "#$ % ( ≤ *(

Iteratively: %+,- ← %+ − 0"#$ %+

Theorem [GL’15]: for smooth bounded functions, step size 0 = -
123 ,

1
56+

#$ %+ ( ∼ *(

5



SGD

!"#$ ←
!" − '"

⋅ )*+ !"



SGD++
Variance Reduction
[Le Roux, Schmidt, Bach ‘12]
…

Momentum
[Nesterov ‘83],…

Adaptive Regularization
[Duchi, Hazan, Singer ‘10],…

!"#$ ← !" − '" ⋅ )*+ !"

Are we at the limit ? Woodworth,Srebro ‘16: yes!  
(gradient methods)



Rosenbrock function



Higher Order Optimization 

• Gradient Descent – Direction of Steepest Descent
• Second Order Methods – Use Local Curvature



Newton’s method (+ Trust region)

!"

!#

!$

!%&" = !% − ) [+#,(!)]0" +,(!)

For non-convex function: can move to ∞
Solution: solve a quadratic approximation in a 
local area (trust region)



Newton’s method (+ Trust region)

!"

!#

!$

!%&" = !% − ) [+#,(!)]0" +,(!)

1. d3 time per iteration, Infeasible for ML!!  
2. Stochastic difference of gradients ≠ hessian

Till recently J



Speed up the Newton direction computation??

• Spielman-Teng ‘04: diagonally dominant systems of equations in 
linear time! 
• 2015 Godel prize  
• Used by Daitch-Speilman for faster flow algorithms
• Faster/simpler by Srivasatva, Koutis, Miller, Peng, others…

• Erdogu-Montanari ‘15: low rank approximation & inversion by 
Sherman-Morisson
• Allow stochastic information
• Still prohibitive:  rank * d2



Our results – Part 1 of talk

• Natural Stochastic Newton Method
• Every iteration in O(d) time. Linear in Input Sparsity
• Couple with Matrix Sampling/ Sketching techniques - Best known running 

time for ! ≫ # for both convex and non-convex opt., provably faster than 
first order methods



Stochastic Newton?
(convex case for illustration)

• ERM, rank-1 loss:    argmin
'
( )∼ + [ℓ ./0), 2) +

4

5
|.|5]

• unbiased estimator of the Hessian:

785 = a:a:
; ⋅ ℓ′ ./0), b: + ? @ ~ B[1,… ,E]

• clearly  ( 785 = 85G , but ( 785
H4

≠ 85G H4

.JK4 = .J − M [8
5G(.)]H4 8G(.)

PQ



Single example 

Vector-vector 

products only

For any distribution on 

naturals  i ∼ #

Circumvent Hessian creation and inversion! 

• 3 steps:  

• (1) represent Hessian inverse as infinite series

$%& = (
)*+ ,- .

/ − $& )

• (2) sample from the infinite series (Hessian-gradient product) , ONCE

$&1%2$1 =(
)
/ − $&1 ) $f = 4)∼5 / − $&1 ) $f ⋅ 1

Pr[;]

• (3) estimate Hessian-power by sampling i.i.d. data examples

= E)∼5,?∼[)] @
?*2 ,- )

/ − $&1? $f ⋅
1

Pr[;]



Improved Estimator

• Previously, Estimate a single term in one estimate

!"# = % + (% − !)( % + % − ! ( % + *… .
-. /

))

• Recursive Reformulation of the series

• Truncate after 0 steps. Typically  0 ~ 2 (condition # of f)

!"# = % + (% − !)( % + % − ! ( % + *… .
-. 3

))!"# = % + (% − !)(% + % − ! % + … .
456789:;5 59-:<=-5 >?@AB

AB

)!3
"# = % + (% − !

CDE. 3=<FG5
)(>!3"#

"# )

• H >!3
"# → !"# as 0 → ∞

• Repeat and average to reduce the variance



LiSSA
Linear-time Second-order Stochastic Algorithm

arg min
'∈)*

+ ,∼. [ℓ 123,, 5, +
1
2
|1|:]

• Compute a full (large batch) gradient  ;f

• Use the estimator =;>:?;? defined previously & move there

Theorem 1:   For large t, LiSSA returns a point in the parameter space @A s.t.

? @A ≤ ? @∗ + D

In total time log G
H
I (K + L M N )

à (w. more tricks) PL log: G
H
I K + MI , fastest known! (& provably faster 1st order WS ’16)

V is a bound on the variance 
of the estimator

• In Practice  - a small 
constant (e.g. 1)
• In Theory - N ≤ M:



Hessian Vector Products for Neural Networks

in time ! " ($%&'()**%& +&,-.)

• 01 - computed via a differentiable circuit of size !(")

• 201 - computed via a differentiable circuit of size O(d) 
(Backpropagation)

• Define 31 ℎ = 201 ℎ 67

2 3 ℎ = 2801 ℎ 7

• There exists a !(") circuit computing 2801 ℎ 7

2809:20 = E1∼=,?∼[1] B
?C: DE 1

F − 280? 2f ⋅
1

Pr[,]



LiSSA for non-convex (FastCubic)

Method Time to
| "#(%)| ≤ (
(Oracle)

Time to
| "#(%)| ≤ (
(Actual)

Second Order? Assumption

Gradient Descent 
(Folklore) ) *+

,- ) ./
,-

N/A Smoothness

Stochastic Gradient 
Descent (Folklore) ) *0+1

,2 ) /
,2

N/A Smoothness

Noisy SGD (Ge et al) ) /34
,2 5-6 ℎ ≽ −,

:
3; < Smoothness

Cubic Regularization 
(Nesterov & Polyak) =) > /?@: + /?

,:.C
5-6 ℎ ≽ −,

:
- < Smooth and Second 

Order Lipschitz

Fast Cubic ) *+
,:.C +

*D
,:.EC ) ./

,:.EC 5-6 ℎ ≽ −,
:
- < Smooth and Second 

Order Lipschitz



2nd order information: new phenomena?

• ”Computational lens for deep nets”:
experiment with 2nd order information…
• Trust region
• Cubic regularization, eigenvalue methods…. 

• Multiple hurdles: 
• Global optimization is NP-hard, even deciding whether 

you are at a local minimum is NP-hard 
• Goal: local minimum | "# ℎ | ≤ &

and        "'# ℎ ≽ − & *

Bengio-group experiment

What is Optimization

But generally speaking...

We’re screwed.
! Local (non global) minima of f0

! All kinds of constraints (even restricting to continuous functions):

h(x) = sin(2πx) = 0
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Experimental Results

Convex: clear 
improvements

Neural networks: doesn’t 
improve upon SGD

What goes wrong? 



Adaptive Regularization Strikes Back

Princeton Google Brain team: Naman Agarwal, Brian Bullins, Xinyi Chen, Elad Hazan, 
Karan Singh, Cyril Zhang, Yi Zhang

(GG
T)-1/2



Adaptive Preconditioning

● Newton’s method special case of preconditioning: make loss surface 
more isotropic

! " ↦ ! $"

!

"



Modern ML is SGD++

Variance Reduction
[Le Roux, Schmidt, Bach ‘12]
…

Momentum
[Nesterov ‘83],…

Adaptive Regularization
[Duchi, Hazan, Singer ‘10],…

!"#$ ← !" − '" ⋅ )*+ !"



Adaptive Optimizers

- Each coordinate ! " gets a learning rate #$ "
#$["] chosen “adaptively” using '() !*:$ ["] - ,*:$["]

- AdaGrad: -$ " ≔ *
∑0123 40 5 6

- RMSprop: -$ " ≔ *
∑0123 7380 40 5 6

- Adam: -$ " ≔ *

*973 ∑0123 7380 40 5 6



What about the other AdaGrad?

full-matrix preconditioning
> " #$ time per iteration

diagonal preconditioning
" # time per iteration

%&'( ← %& − +
,-(

&
.,.,/

0(/$

⋅ .&%&'( ← %& − #34. +
,-(

&
.,.,/

0(/$

⋅ .&



What does adaptive regularization even do?!

● Convex, full-matrix case:  [Duchi-Hazan-Singer ‘10]: “best regularization in hindsight”

!
"
#" $" − $∗ = ( min,- . /0 !

"
#" .1

● Diagonal version: up to 
2
0 improvement upon SGD (in optimization AND generalization)

● No analysis for non-convex optimization, till recently (still no speedup vs. SGD)

○ Convergence: [Li, Orabona ‘18], [Ward, Wu, Bottou ‘18]



The Case for Full-Matrix Adaptive Regularization

● GGT, a new adaptive optimizer
● Efficient full-matrix (low-rank) AdaGrad

● Theory: “Adaptive” convergence rate on convex & non-convex !
Up to " #

$ faster than SGD! 

● Experiments: viable in the deep learning era
● GPU-friendly; not much slower than SGD on deep models
● Accelerates training in deep learning benchmarks
● Empirical insights on anisotropic loss surfaces, real and synthetic



The GGT Algorithm

● SGD:  !"#$ ← !" − '" ⋅ )"
● AdaGrad: !"#$ ← !" − diag ∑/0$" )/1 2$/1 ⋅ )"
● Full-Matrix AdaGrad: !"#$ ← !" − ∑/0$" )/)/4 2$/1 ⋅ )"
● GGT: !"#$ ← !" − 5"5"4 2$/1 ⋅ )"

5" = )" 7)"2$ 71)"21 ⋯ 792$)"29#$

: ≈ 200

> ≈ 10@



Why a low-rank preconditioner?

● Answer 1: want to forget stale gradients (like Adam)
● Synthetic experiments: logistic regression, polytope analytic center



! × ! #$% = ! × ! × ! #'% × !

The GGT speedup



The GGT speedup

Matrix ops: ! "#$
Huge SVD: ! #%

Matrix ops: ! "$#
Tiny SVD: ! "%



Large-Scale Experiments (CIFAR-10, PTB)



Visualizing Gradient Spectra
eigs %&'%&
@ ) = 150

26-layer ResNet
CIFAR-10

3-layer LSTM
Penn Treebank

(char-level)



Theory: faster convergence vs. non-convex SGD

- Convex: ! "# ≤ argmin+ ! " + - in . /0
10 steps

- Non-convex: ∃3: 5! "6 ≤ - within . 7
10 convex epochs

- Reduction via modified descent lemma:

"687

! "6 + 5! " , " − "6
+ ; " − "6 < ≥ ! "

"6

"687

! " + 2; " − "6 < ≥ ! "

"6

Minimize 1/-< times: Minimize 1/-< times:



The Ratio of Adaptivity

● Define the adaptivity ratio !:

!" ≔ ∑%&'( )%*+
"

∑%&'( )%,+-
" = AdaGrad regret

worst−case OGD regret

● [DHS10]: ! ≤ '
> , @ for diag-AdaGrad, sometimes smaller for full AdaGrad

● Strongly convex losses: GGT* converges in AB CDED
F steps

● Non-convex reduction: GGT* converges in AB CDED
FG steps

● First step towards analyzing adaptive methods in non-convex optimization



A note on the important parameters

● A lot of work on improving dependence on !

● Recent state-of-the-art in SGD++:    "#$ →
"
#&.(

● In practice: ) ∼ 0.1, improvement amounts to factor 10 ∼ 3.1

● Our improvement     ".$ →
/0
.$ : can be as large as 1

(3 ∼ 104 for language models!)

● Huge untapped potential: characterize the ratio of adaptivity! 



Summary

1. Special characteristics of stochastic optimization in ML 
2. Second order methods in linear time
• LiSSA : fastest running time for convex ML
• Non-convex – different solution concept

FastCubic: faster than gradient descent! 
3. Adaptive regularization strikes again:

• full-matrix AR in linear time
• Dimension-scale improvements possible, visible in experiments

4. Opportunity to improve factors of dimension rather than 
approximation


