Discovery of Latent Factors in High-dimensional Data via Spectral Methods

Furong Huang

University of Maryland

Workshop on Quantum Machine Learning

Machine Learning - Excitements

Success of Supervised Learning

Image classification

Speech recognition

Text processing

Machine Learning - Excitements

Success of Supervised Learning

Image classification

Speech recognition

Text processing

Key to Success

- Deep composition of nonlinear units
- Enormous labeled data
- Computation power growth

Machine Learning - Modern Challenges

Automated discovery of features and categories?

Filter bank learning

Feature extraction

Embeddings, Topics

Machine Learning - Modern Challenges

Automated discovery of features and categories?

Real AI requires Unsupervised Learning

Filter bank learning

Feature extraction

Embeddings, Topics

- Summarize key features in data
- State-of-the-art: Humans are better than machines
- Goal: Intelligent machines that summarize key features in data
- Interpretable modeling and learning of the data
- Theoretically guaranteed learning
- Extracted features are interpretable

Unsupervised Learning with Big Data

Curse of Dimensionality

- More information \rightarrow more unknowns/variables \rightarrow challenging model learning

Unsupervised Learning with Big Data

Information Extraction

- High dimension observation vs Low dimension representation

Unsupervised Learning with Big Data

Information Extraction

- High dimension observation vs Low dimension representation

PublMed

Finding Needle In the Haystack Is Challenging

Unsupervised Learning with Big Data

Information Extraction

- High dimension observation vs Low dimension representation

PublMed

My Solution: A Unified Tensor Decomposition Framework

App 1: Automated Categorization of Documents

\equiv sectrons
© home Q search

COLLEGE FOOTBALL

At Florida State, Football Clouds Justice

Now, an examination by The New York Times of police and court records, 2 TMZ, the gossip website, also requested the police report and later asked
along with interviews with crime witnesses, has found that, far from an aberration, the treatment of the Winston complaint was in keeping with the way the police on numerous occasions have soft-pedaled allegations of wrongdoing by Seminoles football players. From criminal mischief and motor vehicle theft to domestic violence, arrests have been avoided, investigations have stalled and players have escaped serious consequences.

In a community whose self-image and economic well-being are so tightly bound to the fortunes of the nation's top-ranked college football team, law enforcement officers are finely attuned to a suspect's football connections. Those ties are cited repeatedly in police reports examined by The Times. What's more, dozens of officers work second jobs directing traffic and providing security at home footballgames, and many express their devotion to the Seminoles on social media.
the school's deputy police chief, Jim L. Russell, if the campus police had interviewed Mr. Winston about the rape report. Mr. Russell responded by saying his officers were not investigating the case, omitting any reference to the city police, even though the campus police knew of their involvement. Thank you for contacting me regarding this rumor -I am glad I can dispel that one!" Mr. Russell told TMZ in an email. The university said Mr. Russell was unaware of any other police investigation at the time of the inquiry. Soon after, the Tallahassee police belatedly sent their files to the news media and to the prosecutor, William N. Meggs. By then critical evidence had been lost and Mr. Meggs, who criticized the police's handling of the case, declined to Ison after the Seminoles' first gamee five 10 ${ }^{\text {am's second-leading receiver. }}$

On Jan. 10, 2013, a female student at Florida State spotted the man she believed had raped her the previous month. After learning his name, Jameis Winston, she reported him to the Tallahassee police.

In the 21 months since, Florida State officials have said little about how

November, when a Tampa reporter, Matt Baker, acting on a tip, sought records of the police investigation.

Upon learning of Mr. Baker's inquiry, Florida State, having shown little curiosity about the rape accusation, suddenly took a keen interest in the journalist seeking to report it, according to emails obtained by The Times.
*Can you share any details on the requesting source?" David Perry, the university's police chief, asked the Tallahassee police. Several hours later, Mr.

Document modeling

- Observed: words in document corpus: search logs, emails etc
- Hidden: (mixed) topics: personal interests, professional area etc

App 1: Automated Categorization of Documents

\equiv sections
© Номе
Q search

COLLEGE FOOTBALL

At Florida State, Football Clouds Justice Topics

Now, an examination by The New York Times of police and court records, TMZ, the gossip website, also requested the police report and later asked along with interviews with crime witnesses, has found that, far from an aberration, the treatment of the Winston complaint was in keeping with the way the police on numerous occasions have soft-pedaled allegations of wrongdoing by Seminoles football players. From criminal mischief and moto vehicle theft to domestic violence, arrests have been avoided, investigations have stalled and players have escaped serious consequences.

In a community whose self-image and economic well-being are so tightly bound to the fortunes of the nation's top-ranked college football team, law enforcement officers are finely attuned to a suspect's football connections. Those ties are cited repeatedly in police reports examined by The Times. What's more, dozens of officers work second jobs directing traffic and providing security at home football games, and many express their devotion the Seminoles on social media
the school's deputy police chief, Jim L Russell, if the campus police had interviewed Mr. Winston about the rape report. Mr. Russell responded by saying his officers were not investigating the case, omitting any reference to the city police, even though the campus police knew of their involvement. Thank you for contacting me regarding this rumor $-I$ am glad I can dispel that one!" Mr. Russell told TMZ in an email. The university said Mr. Russell was unaware of any other police investigation at the time of the inquiry. Soon after, the Tallahassee police belatedly sent their files to the news media and to the prosecutor, William N. Meggs. By then critical evidence had been lost and Mr. Meggs, who criticized the police's handling of the case, declined to Ison after the Seminoles' first games five am's second-leading receiver (2)

On Jan. 10, 2013, a female student at Florida State spotted the man she believed had raped her the previous month. After learning his name, Jameis Winston, she reported him to the Tallahassee police.

In the 21 months since, Florida State officials have said little about how Wey handled the case, which is no As The Times reported last April, the Tallahassee police also failed to investigated by the federal Depart aggressively investigate the rape accusation. It did not become public until

Most recently, university officials suspended Mr. Winston for one game after he stood in a public place on campus and, playing off a running Internet ag, shouted a crude reference to a sex act. In a news conference afterward, his coach, Jimbo Fisher, said, "Our hope and belief is Jameis will learn from this and use better judgment and language and decision-making."

November, when a Tampa reporter, Matt Baker, acting on a tip, sought records of the police investigation.

Upon learning of Mr. Baker's inquiry, Florida State, having shown little curiosity about the rape accusation, suddenly took a keen interest in the journalist seeking to report it, according to emails obtained by The Times.
"Can you share any details on the requesting source?" David Perry, the university's police chief, asked the Tallahassee police. Several hours later, Mr

Document modeling

- Observed: words in document corpus: search logs, emails etc
- Hidden: (mixed) topics: personal interests, professional area etc

App 2: Community Extraction From Connectivity Graph

Social Networks

- Observed: network of social ties: friendships, transactions etc
- Hidden: (mixed) groups/communities of social actors

App 2: Community Extraction From Connectivity Graph

Social Networks

- Observed: network of social ties: friendships, transactions etc
- Hidden: (mixed) groups/communities of social actors

Tensor Methods Compared with Variational Inference

Learning Topics from PubMed on Spark: 8 million docs

Tensor Methods Compared with Variational Inference

Learning Topics from PubMed on Spark: 8 million docs

Learning Communities from Graph Connectivity

Tensor Methods Compared with Variational Inference

Learning Topics from PubMed on Spark: 8 million docs

Learning Communities from Graph Geanectivity

Facebook: $n \sim 20 k$ Yelp: $n \sim 40 k$ de DBLPsub: $n \sim 0.1 m \quad$ DBLP: $n \sim 1 m$

[^0]
App 3: Cataloging Neuronal Cell Types In the Brain

Neuroscience

- Observed: cellular-resolution brain slices
- Hidden: neuronal cell types

App 3: Cataloging Neuronal Cell Types In the Brain

- Our method vs Average expression level [Grange 14']

Recovered known cell types

1 Interneurons
2 S1Pyramidal
3 Astrocytes
4 Ependymal

5 Microglia
6 Endothelial
7 Mural
8 Oligodendrocytes

App 4: Word Sequence Embedding Extraction

[^1]
App 5: Human Disease Hierarchy Discovery

CMS: 1.6 million patients, 168 million diagnostic events, 11 k diseases.

- Observed: co-occurrence of diseases on patients
- Hidden: disease similarity/hierarchy

[^2] A. Anandkumar, NIPS 2015 MLHC workshop.

How to model hidden effects?

Basic Approach: mixtures/clusters

- Hidden variable h is categorical.

Advanced: Probabilistic models

- Hidden variable h has more general distributions.
- Can model mixed memberships.

This talk: basic mixture model and some advanced models (topic model)

Challenges in Learning

Basic goal in all mentioned applications
Discover hidden structure in data: unsupervised learning.

Learning Algorithm

Challenges in Learning - find hidden structure in data

Unlabeled data

Learning Algorithm

Inference

Challenge: Conditions for Identifiability

- Whether can model be identified given infinite computation and data?
- Are there tractable algorithms under identifiability?

Challenges in Learning - find hidden structure in data

Unlabeled data

Inference

Challenge: Conditions for Identifiability

- Whether can model be identified given infinite computation and data?
- Are there tractable algorithms under identifiability?

Challenge: Efficient Learning of Latent Variable Models

- MCMC: random sampling, slow

Exponential mixing time

Challenges in Learning - find hidden structure in data

Challenge: Conditions for Identifiability

- Whether can model be identified given infinite computation and data?
- Are there tractable algorithms under identifiability?

Challenge: Efficient Learning of Latent Variable Models

- MCMC: random sampling, slow

Exponential mixing time

- Likelihood: non-convex, not scalable

Exponential critical points

Challenges in Learning - find hidden structure in data

Challenge: Conditions for Identifiability

- Whether can model be identified given infinite computation and data?
- Are there tractable algorithms under identifiability?

Challenge: Efficient Learning of Latent Variable Models

- MCMC: random sampling, slow

Exponential mixing time

- Likelihood: non-convex, not scalable

Exponential critical points

- Efficient computational and sample complexities?

Challenges in Learning - find hidden structure in data

Challenge: Conditions for Identifiability

- Whether can model be identified given infinite computation and data?
- Are there tractable algorithms under identifiability?

Challenge: Efficient Learning of Latent Variable Models

- MCMC: random sampling, slow

Exponential mixing time

- Likelihood: non-convex, not scalable

Exponential critical points

- Efficient computational and sample complexities?

Guaranteed and efficient learning through spectral methods

Unsupervised Learning via Probabilistic Models

Unsupervised Learning via Probabilistic Models

$$
\text { tensor decomposition } \rightarrow \text { correct model }
$$

Contributions

- Guaranteed online algorithm with global convergence guarantee
- Highly scalable, highly parallel, dimensionality reduction
- Tensor library on CPU/GPU/Spark
- Interdisciplinary applications
- Extension to model with group invariance

Outline

(1) Introduction
(2) Introduction of Method of Moments and Tensor Notations
(3) LDA and Community Models

- From Data Aggregates to Model Parameters
- Guaranteed Online Algorithm
(4) Quantum Algorithms for Leading Eigenvector Computation
(5) Conclusion

Method-of-Moments At A Glance

(1) Determine function of model parameters $\boldsymbol{\theta}$ estimatable from observable data:

- Moments

$$
\mathbb{E}_{\boldsymbol{\theta}}[f(\boldsymbol{X})]
$$

(2) Form estimates of moments using data (iid samples $\left\{\boldsymbol{x}_{i}\right\}_{i=1}^{n}$):

- Empirical Moments

$$
\widehat{\mathbb{E}}[f(\boldsymbol{X})]
$$

(3) Solve the approximate equations for parameters $\boldsymbol{\theta}$:

- Moment matching

$$
\mathbb{E}_{\boldsymbol{\theta}}[f(\boldsymbol{X})] \stackrel{n \rightarrow \infty}{=} \widehat{\mathbb{E}}[f(\boldsymbol{X})]
$$

Toy Example
How to estimate Gaussian variable, i.e., $(\boldsymbol{\mu}, \boldsymbol{\Sigma})$,
given iid samples $\left\{\boldsymbol{x}_{i}\right\}_{i=1}^{n} \sim \mathcal{N}\left(\boldsymbol{\mu}, \boldsymbol{\Sigma}^{2}\right)$?

What is a tensor?

Multi-dimensional Array

- Tensor - Higher order matrix
- The number of dimensions is called tensor order.

Slices

- Horizontal slices

- Lateral slices

- Frontal slices

Tensor Product

- $[\boldsymbol{a} \otimes \boldsymbol{b}]_{i_{1}, i_{2}}=\boldsymbol{a}_{i_{1}} \boldsymbol{b}_{i_{2}}$
- Rank-1 matrix

- $[\boldsymbol{a} \otimes \boldsymbol{b} \otimes \boldsymbol{c}]_{i_{1}, i_{2}, i_{3}}=\boldsymbol{a}_{i_{1}} \boldsymbol{b}_{i_{2}} \boldsymbol{c}_{i_{3}}$
- Rank-1 tensor

Tensors in Method of Moments

Matrix: Pair-wise relationship

- Signal or data observed $\boldsymbol{x} \in \mathbb{R}^{d}$
- Rank 1 matrix: $[\boldsymbol{x} \otimes \boldsymbol{x}]_{i, j}=\boldsymbol{x}_{i} \boldsymbol{x}_{j}$
- Aggregated pair-wise relationship

$$
\boldsymbol{M}_{2}=\mathbb{E}[\boldsymbol{x} \otimes \boldsymbol{x}]
$$

Tensor: Triple-wise relationship or higher

- Signal or data observed $\boldsymbol{x} \in \mathbb{R}^{d}$
- Rank 1 tensor:

$$
[\boldsymbol{x} \otimes \boldsymbol{x} \otimes \boldsymbol{x}]_{i, j, k}=\boldsymbol{x}_{i} \boldsymbol{x}_{j} \boldsymbol{x}_{k}
$$

- Aggregated triple-wise relationship

$$
\boldsymbol{\mathcal { M }}_{3}=\mathbb{E}[\boldsymbol{x} \otimes \boldsymbol{x} \otimes \boldsymbol{x}]=\mathbb{E}\left[\boldsymbol{x} \otimes^{3}\right]
$$

CP decomposition

- $\boldsymbol{X}=\sum_{h=1}^{R} \boldsymbol{a}_{h} \otimes \boldsymbol{b}_{h} \otimes \boldsymbol{c}_{h}$
- Summation of rank-1 tensors

Why are tensors powerful?

Matrix Orthogonal Decomposition

- Not unique without eigenvalue gap

$$
\left[\begin{array}{cc}
1 & 0 \\
0 & 1
\end{array}\right]=e_{1} e_{1}^{\top}+e_{2} e_{2}^{\top}=\boldsymbol{u}_{1} \boldsymbol{u}_{1}^{\top}+\boldsymbol{u}_{2} \boldsymbol{u}_{2}^{\top}
$$

Why are tensors powerful?

Matrix Orthogonal Decomposition

- Not unique without eigenvalue gap

$$
\left[\begin{array}{cc}
1 & 0 \\
0 & 1
\end{array}\right]=e_{1} e_{1}^{\top}+e_{2} e_{2}^{\top}=\boldsymbol{u}_{1} \boldsymbol{u}_{1}^{\top}+\boldsymbol{u}_{2} \boldsymbol{u}_{2}^{\top}
$$

- Unique with eigenvalue gap

Why are tensors powerful?

Matrix Orthogonal Decomposition

- Not unique without eigenvalue gap

$$
\left[\begin{array}{cc}
1 & 0 \\
0 & 1
\end{array}\right]=e_{1} e_{1}^{\top}+e_{2} e_{2}^{\top}=\boldsymbol{u}_{1} \boldsymbol{u}_{1}^{\top}+\boldsymbol{u}_{2} \boldsymbol{u}_{2}^{\top}
$$

- Unique with eigenvalue gap

Tensor Orthogonal Decomposition (Harshman, 1970)

- Unique: eigenvalue gap not needed

Why are tensors powerful?

Matrix Orthogonal Decomposition

- Not unique without eigenvalue gap

$$
\left[\begin{array}{cc}
1 & 0 \\
0 & 1
\end{array}\right]=e_{1} e_{1}^{\top}+e_{2} e_{2}^{\top}=\boldsymbol{u}_{1} \boldsymbol{u}_{1}^{\top}+\boldsymbol{u}_{2} \boldsymbol{u}_{2}^{\top}
$$

- Unique with eigenvalue gap

Tensor Orthogonal Decomposition (Harshman, 1970)

- Unique: eigenvalue gap not needed
- Slice of tensor has eigenvalue gap

Why are tensors powerful?

Matrix Orthogonal Decomposition

- Not unique without eigenvalue gap

$$
\left[\begin{array}{cc}
1 & 0 \\
0 & 1
\end{array}\right]=e_{1} \boldsymbol{e}_{1}^{\top}+e_{2} e_{2}^{\top}=\boldsymbol{u}_{1} \boldsymbol{u}_{1}^{\top}+\boldsymbol{u}_{2} \boldsymbol{u}_{2}^{\top}
$$

- Unique with eigenvalue gap

Tensor Orthogonal Decomposition (Harshman, 1970)

- Unique: eigenvalue gap not needed
- Slice of tensor has eigenvalue gap

Outline

(2) Introduction of Method of Moments and Tensor Notations

(3) LDA and Community Models

- From Data Aggregates to Model Parameters
- Guaranteed Online Algorithm

4) Quantum Algorithms for Leading Eigenvector Computation
(5) Conclusion

Outline

(1) Introduction
(2) Introduction of Method of Moments and Tensor Notations
(3) LDA and Community Models

- From Data Aggregates to Model Parameters
- Guaranteed Online Algorithm
(4) Quantum Algorithms for Leading Eigenvector Computation
(5) Conclusion

Probabilistic Topic Models - LDA

Bag of words

- Infer topics of documents
- Learn hidden process drives the obs.

Probabilistic Topic Models - LDA

Bag of words

- Infer topics of documents
- Learn hidden process drives the obs.

Probabilistic Topic Models - LDA

Bag of words

- Infer topics of documents
- Learn hidden process drives the obs.

Generative model

- Topic proportion $\sim \operatorname{Dir}(\alpha)$ for a doc
- Draw a topic, then a word for a token

campus
police
witness
- Topic-word matrix $\mathbb{P}\left[\right.$ word $=e_{i} \mid$ topic $\left.=j\right]$

Moments Matching

Goal: Linearly independent topic-word table

$$
\begin{array}{l|l}
\text { campus } \\
\text { police } & \mathbb{E}[\text { word } \mid \text { topic }=j]=\sum_{i} \mathbb{P}\left[\text { word }=e_{i} \mid \text { topic }=j\right] e_{i}=\text { column } j
\end{array}
$$

witness

Moments Matching

Goal: Linearly independent topic-word table
 campus
police witness

$$
\mathbb{E}[\text { word } \mid \text { topic }=j]=\sum_{i} \mathbb{P}\left[\text { word }=e_{i} \mid \text { topic }=j\right] e_{i}=\text { column } j
$$

M_{1} : Occurrence Frequency of Words

$$
\mathbb{E}[\text { word }]=\sum_{j} \mathbb{E}[\text { word } \mid \text { topic }=j] \mathbb{P}[\text { topic }=j]
$$

Moments Matching

Goal: Linearly independent topic-word table
 campus police witness

$$
\mathbb{E}[\text { word } \mid \text { topic }=j]=\sum_{i} \mathbb{P}\left[\text { word }=e_{i} \mid \text { topic }=j\right] e_{i}=\text { column } j
$$

M_{1} : Occurrence Frequency of Words

$$
\mathbb{E}[\text { word }]=\sum_{j} \mathbb{E}[\text { word } \mid \text { topic }=j] \mathbb{P}[\text { topic }=j]
$$

$+$

No unique decomposition of vectors

Moments Matching

Goal: Linearly independent topic-word table
 campus
police witness

$$
\mathbb{E}[\text { word } \mid \text { topic }=j]=\sum_{i} \mathbb{P}\left[\text { word }=e_{i} \mid \text { topic }=j\right] e_{i}=\text { column } j
$$

M_{2} : Modified Co-occurrence Frequency of Word Pairs
$\mathbb{E}\left[\right.$ word $_{1} \otimes$ word $\left._{2}\right]=\sum_{j, j^{\prime}} \mathbb{E}\left[\right.$ word $_{1} \mid$ topic $\left._{1}=j\right] \otimes \mathbb{E}\left[\right.$ word $_{2} \mid$ topic $\left._{2}=j^{\prime}\right] \mathbb{P}\left[\right.$ topic $_{1}=j$, topic $\left._{2}=j^{\prime}\right]$

Moments Matching

Goal: Linearly independent topic-word table
 campus police witness

$$
\mathbb{E}[\text { word } \mid \text { topic }=j]=\sum_{i} \mathbb{P}\left[\text { word }=e_{i} \mid \text { topic }=j\right] e_{i}=\text { column } j
$$

M_{2} : Modified Co-occurrence Frequency of Word Pairs
$\mathbb{E}\left[\right.$ word $_{1} \otimes$ word $\left._{2}\right]=\sum_{j, j^{\prime}} \mathbb{E}\left[\right.$ word $_{1} \mid$ topic $\left._{1}=j\right] \otimes \mathbb{E}\left[\right.$ word $_{2} \mid$ topic $\left._{2}=j^{\prime}\right] \mathbb{P}\left[\right.$ topic $_{1}=j$, topic $\left._{2}=j^{\prime}\right]$

Matrix decomposition recovers subspace, not actual model

Moments Matching

Goal: Linearly independent topic-word table

M_{2} : Modified Co-occurrence Frequency of Word Pairs
$\mathbb{E}\left[\right.$ word $_{1} \otimes$ word $\left._{2}\right]=\sum_{j, j^{\prime}} \mathbb{E}\left[\right.$ word $_{1} \mid$ topic $\left._{1}=j\right] \otimes \mathbb{E}\left[\right.$ word $_{2} \mid$ topic $\left._{2}=j^{\prime}\right] \mathbb{P}\left[\right.$ topic $_{1}=j$, topic $\left._{2}=j^{\prime}\right]$

Many such W 's, find one, project data with W

Moments Matching

Goal: Linearly independent topic-word table

M_{3} : Modified Co-occurrence Frequency of Word Triplets

Unique orthogonal tensor decomposition, project result with W^{\dagger}

Moments Matching

Goal: Linearly independent topic-word table

M_{3} : Modified Co-occurrence Frequency of Word Triplets

Tensor decomposition uniquely discovers the correct model
Learning Topic Models through Matrix/Tensor Decomposition

Mixed Membership Community Models

Mixed memberships

Mixed Membership Community Models

Mixed memberships

What ensures guaranteed learning?

Mixed Membership Community Models

Mixed memberships

What ensures guaranteed learning?

Outline

(1) Introduction
(2) Introduction of Method of Moments and Tensor Notations
(3) LDA and Community Models

- From Data Aggregates to Model Parameters
- Guaranteed Online Algorithm
(4) Quantum Algorithms for Leading Eigenvector Computation
(5) Conclusion

Guaranteed Online Tensor Decomposition
Model is uniquely identifiable! How to identify?

Guaranteed Online Tensor Decomposition

Model is uniquely identifiable! How to identify?
Online Tensor Decomposition

- Tensor $T=\sum_{i} a_{i} \otimes a_{i} \otimes a_{i} \otimes a_{i}$, where $\left\|a_{i}\right\|=1, a_{i}^{\top} a_{j}=0$

Guaranteed Online Tensor Decomposition

Model is uniquely identifiable! How to identify?
Online Tensor Decomposition

- Tensor $T=\sum_{i} a_{i} \otimes a_{i} \otimes a_{i} \otimes a_{i}$, where $\left\|a_{i}\right\|=1, a_{i}^{\top} a_{j}=0$ Objective?

Guaranteed Online Tensor Decomposition

Model is uniquely identifiable! How to identify?
Online Tensor Decomposition

- Tensor $T=\sum_{i} a_{i} \otimes a_{i} \otimes a_{i} \otimes a_{i}$, where $\left\|a_{i}\right\|=1, a_{i}^{\top} a_{j}=0$ Objective?
- Objective $\min _{\forall i,\left\|u_{i}\right\|^{2}=1} \sum_{i \neq j} T\left(u_{i}, u_{i}, u_{j}, u_{j}\right) \quad$ Non-convex!

Theorem: The proposed objective function has equivalent local optima.

Guaranteed Online Tensor Decomposition

Model is uniquely identifiable! How to identify?
Online Tensor Decomposition

- Tensor $T=\sum_{i} a_{i} \otimes a_{i} \otimes a_{i} \otimes a_{i}$, where $\left\|a_{i}\right\|=1, a_{i}^{\top} a_{j}=0$ Objective?
- Objective $\min _{\forall i,\left\|u_{i}\right\|^{2}=1} \sum_{i \neq j} T\left(u_{i}, u_{i}, u_{j}, u_{j}\right) \quad$ Non-convex!

Theorem: The proposed objective function has equivalent local optima.

Will SGD work?

Guaranteed Online Tensor Decomposition

Model is uniquely identifiable! How to identify?
Online Tensor Decomposition

- Tensor $T=\sum_{i} a_{i} \otimes a_{i} \otimes a_{i} \otimes a_{i}$, where $\left\|a_{i}\right\|=1, a_{i}^{\top} a_{j}=0$ Objective?
- Objective $\min _{\forall i,\left\|u_{i}\right\|^{2}=1} \sum_{i \neq j} T\left(u_{i}, u_{i}, u_{j}, u_{j}\right)$

Non-convex!

Theorem: The proposed objective function has equivalent local optima.

Will SGD work?

Theorem: For smooth, twice-diff fn. with non-degenerate saddle points, noisy SGD converges to a local optimum in polynomial steps.

Guaranteed Online Tensor Decomposition

Model is uniquely identifiable! How to identify?
Online Tensor Decomposition

- Tensor $T=\sum_{i} a_{i} \otimes a_{i} \otimes a_{i} \otimes a_{i}$, where $\left\|a_{i}\right\|=1, a_{i}^{\top} a_{j}=0$ Objective?
- Objective $\min _{\forall i,\left\|u_{i}\right\|^{2}=1} \sum_{i \neq j} T\left(u_{i}, u_{i}, u_{j}, u_{j}\right) \quad$ Non-convex!

Theorem: The proposed objective function has equivalent local optima.

Will SGD work?

Theorem: For smooth, twice-diff fn. with non-degenerate saddle points, noisy SGD converges to a local optimum in polynomial steps.

Why could we escape from saddle points? Stochastic Gradient Descent with Noise

- Saddle point has 0 gradient

[^3]
Why could we escape from saddle points? Stochastic Gradient Descent with Noise

- Saddle point has 0 gradient
- Non-degenerate saddle: Hessian has \pm eigenvalue

[^4]
Why could we escape from saddle points? Stochastic Gradient Descent with Noise

- Saddle point has 0 gradient
- Non-degenerate saddle: Hessian has \pm eigenvalue
- Negative eigenvalue: direction of escape

[^5]
Why could we escape from saddle points?

 Stochastic Gradient Descent with Noise

- Saddle point has 0 gradient
- Non-degenerate saddle: Hessian has \pm eigenvalue
- Negative eigenvalue: direction of escape
Noise could help!

[^6]
Outline

(1) Introduction
(2) Introduction of Method of Moments and Tensor Notations
(3) LDA and Community Models

- From Data Aggregates to Model Parameters
- Guaranteed Online Algorithm

4 Quantum Algorithms for Leading Eigenvector Computation
(5) Conclusion

First PCA

PCA problem

- Sample $S=\left\{\boldsymbol{x}_{i}\right\}_{i=1}^{m}$, where $\boldsymbol{x}_{i} \in \mathbb{R}^{d}$
- Q: Identifies the direction of the largest variance in the data?

Problem Formulation

Solving

$$
\max _{\boldsymbol{u} \in \mathbb{R}^{d},\|\boldsymbol{u}\|_{2}=1} \boldsymbol{u}^{\top} \boldsymbol{A} \boldsymbol{u}
$$

where covariance matrix $\boldsymbol{A}=\frac{1}{m} \sum_{i=1}^{m} \boldsymbol{x}_{i} \boldsymbol{x}_{i}{ }^{\top}$
Problem Regime

- Assume $0 \preceq A \preceq I$ and s-sparse (i.e., nnz(each row or column) $\leq s$)

Classical Algorithm

Spectral Gap

- Spectral gap $\Delta=\lambda_{1}-\lambda_{2}$
- ordered eigenvalues $1 \geq \lambda_{1} \geq \ldots \lambda_{d} \geq 0$
- and corresponding eigenvectors $\boldsymbol{u}_{1}, \ldots, \boldsymbol{u}_{d}$.

Methods under Warm Start

- Warm start: Initialization \boldsymbol{v}_{0} such that $\left|<\boldsymbol{v}_{0}, \boldsymbol{u}_{1}>\right|>\phi>0$
- Iteration methods achieve ϵ precision: $<\boldsymbol{v}_{k}, \boldsymbol{u}_{1}>\geq 1-\epsilon$
- Power method $\frac{\boldsymbol{A}^{k} \boldsymbol{v}_{0}}{\left\|\boldsymbol{A}^{k} v_{0}\right\|}$ takes $O\left(\frac{s d}{\Delta} \log \left(\frac{1}{\phi \epsilon}\right)\right)$
- Lanczos method or accelerated power method takes $O\left(\frac{s d}{\sqrt{\Delta}} \log \left(\frac{1}{\phi \epsilon}\right)\right)$
\star Replacing the monomial \boldsymbol{A}^{k} by its Chebyshev polynomial approximation

Question: Speedup from $O(d)$ to poly $(\log d)$?

Quantum Speedup

Motivation

Quantum effects can achieve significant speedup.

Examples

- Shor's algorithm
- exponential speed-up for factoring integers
- Grover's algorithm
- quadratic speed-up for searching in unstructured database
- (Harrow, Hassidim, Lloyd '09) \& (Childs, Kothari, Somma '17)
- $\Omega(d) \rightarrow \operatorname{poly}(\log d)$ for solving d-dimensional linear equation systems.
- weaker output requirement
\star a quantum state whose vector representation is roughly the solution to the linear equation system.

Quantum Leading PCA

Input model

- Quantum oracle which generates a quantum state whose vector representation is \boldsymbol{v}_{0} and \boldsymbol{A}.

Output model

- A quantum state whose vector representation is \boldsymbol{v}_{k}

Main Result

Under warm start $\left|<\boldsymbol{v}_{0}, \boldsymbol{u}_{1}>\right|=\phi>0$, there is a quantum algorithm which prepares a quantum state with vector representation v_{k} such that $<\boldsymbol{v}_{k}, \boldsymbol{u}_{1}>\geq 1-\epsilon$ with probability at least $2 / 3$

- using $O(s \log (s / \phi \epsilon) / \phi \sqrt{\Delta})$ queries to quantum oracle $U_{A, s}, U_{A, e}$
- $O(1 / \phi)$ queries to $U_{\boldsymbol{v}_{0}}$
w. $O\left(s\left(\log d \log \left(\frac{s}{\phi \epsilon}\right)+\log ^{3.5}\left(\frac{s}{\phi \epsilon}\right)\right) / \phi \sqrt{\Delta}\right) 2$-qubit quantum gates in total.

Joint work with Tongyang Li and Xiaodi Wu.

Intuition for Speedup

Chebyshev polynomials can be significantly accelerated

 in quantum computation- Matrix power $\boldsymbol{A}^{k} \boldsymbol{b}$ is the key
- Quantum-walk
\star effectively constructs a degree-m Chebyshev polynomial of $\boldsymbol{A} / \mathrm{s}$.
- Quantum primitive: the linear combination of unitaries (LCU)
* effectively linearly combines these Chebyshev polynomials to derive the desired approximation polynomial.

Quantum Computation for Linear Algebraic Problems

Outline

(1) Introduction
(2) Introduction of Method of Moments and Tensor Notations
(3) LDA and Community Models

- From Data Aggregates to Model Parameters
- Guaranteed Online Algorithm
(4) Quantum Algorithms for Leading Eigenvector Computation
(5) Conclusion

Summary

Spectral methods reveal hidden structure

- Text/Image processing
- Social networks
- Neuroscience, healthcare ...

Summary

Spectral methods reveal hidden structure

- Text/Image processing
- Social networks
- Neuroscience, healthcare ...

Versatile for latent variable models

- Flat model \rightarrow hierarchical model
- Sparse coding \rightarrow convolutional model
- Efficient, convergence guarantee

Thank You

furongh@cs.umd.edu

[^0]: "Online Tensor Methods for Learning Latent Variable Models", F. Huang, U. Niranjan, M. Hakeem, A. Anandkumar, JMLR14. "Tensor Methods on Apache Spark", F. Huang, A. Anandkumar, Oct. 2015.

[^1]: "Convolutional Dictionary Learning through Tensor Factorization", by F. Huang, A. Anandkumar, In Proceedings of JMLR 2015.

[^2]: "Scalable Latent TreeModel and its Application to Health Analytics" by F. Huang, N. U.Niranjan, I. Perros, R. Chen, J. Sun,

[^3]: "Escaping From Saddle Points - Online Stochastic Gradient for Tensor Decomposition",by R. Ge, F. Huang, C. Jin, Y. Yuan, COLT 2015.

[^4]: "Escaping From Saddle Points - Online Stochastic Gradient for Tensor Decomposition",by R. Ge, F. Huang, C. Jin, Y. Yuan, COLT 2015.

[^5]: "Escaping From Saddle Points - Online Stochastic Gradient for Tensor Decomposition", by R. Ge, F. Huang, C. Jin, Y. Yuan, COLT 2015.

[^6]: "Escaping From Saddle Points - Online Stochastic Gradient for Tensor Decomposition", by R. Ge, F. Huang, C. Jin, Y. Yuan, COLT 2015.

