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Machine Learning - Excitements

Success of Supervised Learning
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Image classification Speech recognition

Key to Success
@ Deep composition of nonlinear units
@ Enormous labeled data

@ Computation power growth

Text processing
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Machine Learning - Modern Challenges

Automated discovery of features and categories?
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Machine Learning - Modern Challenges

Automated discovery of features and categories?

Real Al requires Unsupervised Learning
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Filter bank learning Feature extraction Embeddings, Topics

@ Summarize key features in data

» State-of-the-art: Humans are better than machines

» Goal: Intelligent machines that summarize key features in data
@ Interpretable modeling and learning of the data

» Theoretically guaranteed learning
» Extracted features are interpretable

/ 39



Unsupervised Learning with Big Data

Curse of Dimensionality

@ More information — more unknowns/variables — challenging model

learning Pubmed

www.pubmed.gov

A service of the National Library of Medicine
and the National Institutes of Health ]
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Unsupervised Learning with Big Data

Information Extraction

@ High dimension observation vs Low dimension representation

Publed

www.pubmed.gov
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and the National Institutes of Health ]
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Unsupervised Learning with Big Data

Information Extraction

@ High dimension observation vs Low dimension representation

PublfQed

www.pubmed.gov

A service of the National Library of Medicine
and the National Institutes of Health ]
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Finding Needle In the Haystack Is Challenging
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Unsupervised Learning with Big Data

Information Extraction

@ High dimension observation vs Low dimension representation

Publffed

www.pubmed.gov

A service of the National Library of Medicine
and the National Institutes of Health ]

?7,

Top|cs

7,
’ ’,’I

4

Communltles
”

My Solution: A Unified Tensor Decomposition Framework
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App 1: Automated Categorization of Documents
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Document modeling
@ Observed: words in document corpus: search logs, emails etc

@ Hidden: (mixed) topics: personal interests, professional area etc
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App 2: Community Extraction From Connectivity Graph

Social Networks
@ Observed: network of social ties: friendships, transactions etc

@ Hidden: (mixed) groups/communities of social actors
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Tensor Methods Compared with Variational Inference

Learning Topics from PubMed on Spark: 8 million docs
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Tensor Methods Compared with Variational Inference

Learning Topics from PubMed on Spark: 8 million docs
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“Online Tensor Methods for Learning Latent Variable Models”, F. Huang, U. Niranjan, M. Hakeem, A. Anandkumar, JMLR14.
“Tensor Methods on Apache Spark”, F. Huang, A. Anandkumar, Oct. 2015.



App 3: Cataloging Neuronal Cell Types In the

Brain

Neuroscience
@ Observed:
@ Hidden:

cellular-resolution brain slices
neuronal cell types

Da e
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App 3: Cataloging Neuronal Cell Types In the Brain
@ Our method vs Average expression level [Grange 14']

— Spatial point process (ours)

— Average expression level (previous)

N
%)

0 20 40 60 80 100
Number of Cell Types

N
o

Perplexity Score
-
[

=
[=]

o
n

Recovered known cell types

1 Interneurons 5 Microglia

2 S1Pyramidal 6 Endothelial

3 Astrocytes 7 Mural

4 Ependymal 8 Oligodendrocytes

“Discovering Neuronal Cell Types and Their Gene Expression Profiles Using a Spatial Point Process Mixture Model”, F. Huang,
A. Anandkumar, C. Borgs, J. Chayes, E. Fraenkel, M. Hawrylycz, E. Lein, A. Ingrosso, S. Turaga, NIPS 2015 BigNeuro workshop.
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App 4: Word Sequence Embedding Extraction

Thelweather is good.
.tree Y
Her life spanned years of
soccer incredible change for women| .
PY ° Mary lived through an era of
® football liberating reform for women.

Word Embedding Word Sequence Embedding

“Convolutional Dictionary Learning through Tensor Factorization”, by F. Huang, A. Anandkumar, In Proceedings of JMLR 2015.
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App 5: Human Disease Hierarchy Discovery
CMS: 1.6 million patients, 168 million diagnostic events, 11 k diseases

780.1 ) Atered mental status

Peptic ulcer disease . " a
S Diseases of digestive system
55521
Other diseases of digestive system

Venous thrombosis and embolism
453.1

451.1 ) Thrombophiebitis

Clotting-related
diseases and
|

conditions
435.1 ) Transient ischemic attack
‘ 173.1
1135 289.3
\ Diseases of blood and
{ blood-forming organs
\ 170.1 185.1
i Malignant neoplasm of prostate
\ 1136
193.1 \
191:1) Malignant neoplasm of thyroid Associated
186.1 — conditions
= (1901 /
201.1) 211.2 /
238.1 Colon polyps
189.1
172.1 Malignant neoplasm of urinary organs.
Malignant melanoma of skin e
@ Observed:

co-occurrence of diseases on patients
disease similarity /hierarchy

Scalable Latent TreeModel and its Application to Health Analytics ” by F. Huang, N. U.Niranjan, I. Perros, R. Chen, J. Sun,
A. Anandkumar, NIPS 2015 MLHC workshop.

@ Hidden:
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Involve discovering the hidden and compact structure

that is embedded in the high-dimensional complex observed data
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How to model hidden effects?

Basic Approach: mixtures/clusters

@ Hidden variable h is categorical.

Advanced: Probabilistic models
@ Hidden variable h has more general distributions. ho | hs

@ Can model mixed memberships.

L1 T2 T3 T4 s

This talk: basic mixture model and some advanced models (topic model)

12 /39



Challenges in Learning
Basic goal in all mentioned applications

Discover hidden structure in data: unsupervised learning.

.',.', ,, —Bﬂ ‘,'r,","
L] ' t , / ’ t ;.[f
Unlabeled data Latent variable model Learning Algorithm Inference
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Challenges in Learning — find hidden structure in data
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Unlabeled data Latent variable model Learning Algorithm Inference

Challenge: Conditions for Identifiability
@ Whether can model be identified given infinite computation and data?

@ Are there tractable algorithms under identifiability?
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Challenge: Efficient Learning of Latent Variable Models

@ MCMC: random sampling, slow
Exponential mixing time
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Challenges in Learning — find hidden structure in data
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Challenge: Conditions for Identifiability
@ Whether can model be identified given infinite computation and data?

@ Are there tractable algorithms under identifiability?

Challenge: Efficient Learning of Latent Variable Models
@ MCMC: random sampling, slow
Exponential mixing time
@ Likelihood: non-convex, not scalable
Exponential critical points
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Challenge: Conditions for Identifiability
@ Whether can model be identified given infinite computation and data?

@ Are there tractable algorithms under identifiability?

Challenge: Efficient Learning of Latent Variable Models
@ MCMC: random sampling, slow

Exponential mixing time
@ Likelihood: non-convex, not scalable
Exponential critical points

o Efficient computational and sample complexities?
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Challenges in Learning — find hidden structure in data
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Unlabeled data Latent variable model Tensor Decomposition Inference

Challenge: Conditions for Identifiability
@ Whether can model be identified given infinite computation and data?

@ Are there tractable algorithms under identifiability?

Challenge: Efficient Learning of Latent Variable Models
@ MCMC: random sampling, slow
Exponential mixing time
@ Likelihood: non-convex, not scalable
Exponential critical points
o Efficient computational and sample complexities?

Guaranteed and efficient learning through spectral methods
13/39



Unsupervised Learning via Probabilistic Models
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Unlabeled data Latent variable model Tensor Decomposition Inference

‘ tensor decomposition — correct model ‘
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Unsupervised Learning via Probabilistic Models

\ AI.EL [ ¢t
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Unlabeled data Latent variable model Tensor Decomposition Inference

‘ tensor decomposition — correct model ‘

Contributions

(]

Guaranteed online algorithm with global convergence guarantee
Highly scalable, highly parallel, dimensionality reduction
Tensor library on CPU/GPU /Spark

Interdisciplinary applications

e © ¢ ¢

Extension to model with group invariance

14 /39



Outline

@ Introduction of Method of Moments and Tensor Notations
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Method-of-Moments At A Glance
© Determine function of model parameters 6 estimatable from
observable data:
» Moments
Eol/(X)]
@ Form estimates of moments using data (iid samples {x;}" ;):
» Empirical Moments R
E[f(X)]
© Solve the approximate equations for parameters 6:
» Moment matching

Toy Example

How to estimate Gaussian variable, i.e., (¢, %),
given iid samples {x;}7, ~ N (u, X2)?

16 /39



What is a tensor?

Multi-dimensional Array
@ Tensor - Higher order matrix
@ The number of dimensions is called tensor order.

o~
I
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i ¥
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\,\
Vs
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Slices

H

@ Horizontal slices

@ Lateral slices

Frontal slices




Tensor Product

[a & b]il,iQ a®b® c]ilﬂ'e,iz
a/i/l ci:&i biQ
= =EDZI
° [a ® b]i17i2 = ailbiz ° [a ®b® c]ihiz,i:s = ailbiz Cig
@ Rank-1 matrix @ Rank-1 tensor
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Tensors in Method of Moments
Matrix: Pair-wise relationship

[xex];; Xj

X; Hl:l:.

@ Signal or data observed x € R?

@ Rank 1 matrix: [x ® z]; ; = x;x; —

o Aggregated pair-wise relationship

M; =E[x ® x]

Tensor: Triple-wise relationship or higher

[xexex];

X
@ Rank 1 tensor: ¥ W X
N, - ZEIZIZI

o Aggregated triple-wise relationship

@ Signal or data observed x € R¢

Mz =E[z®z® x| = Ezo?]

20/39



CP decomposition

S S

b1 b2

ap az

R
oX =) an®b,®c,
h=1

@ Summation of rank-1 tensors

~ + Hoe
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Why are tensors powerful?

Matrix Orthogonal Decomposition
@ Not unique without eigenvalue gap

[ (1) (1) } :elelT—I—eQeQT:uluI—i—ugu;r
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Why are tensors powerful?

Matrix Orthogonal Decomposition

@ Not unique without eigenvalue gap

[ (1) (1) } :elelT—I—eQeQT:uluI—i—ugu;r

@ Unique with eigenvalue gap

Tensor Orthogonal Decomposition (Harshman, 1970)

@ Unique: eigenvalue gap not needed

= © + o

Tensor = u;@u;@u;tu,@u,@y,

22 /39
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Outline

© LDA and Community Models
® From Data Aggregates to Model Parameters
@ Guaranteed Online Algorithm
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Outline

@© Introduction
@ Introduction of Method of Moments and Tensor Notations

© LDA and Community Models
@ From Data Aggregates to Model Parameters

@ Quantum Algorithms for Leading Eigenvector Computation

© Conclusion
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Probabilistic Topic Models - LDA

Bag of words Generative model
@ Infer topics of documents @ Topic proportion ~ Dir(«) for a doc
@ Learn hidden process drives the @ Draw a topic, then a word for a token
obs.
: campus = € e Qs e New Pork Times
police At Florida State, Football Clouds Justice Topics
witness e m—— .\\
campus ~ \\
police h Oﬂjﬂ
witness —~/
~ Topic Proportion
campus /
police
witness
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Probabilistic Topic Models - LDA

Bag of words Generative model
@ Infer topics of documents @ Topic proportion ~ Dir(«) for a doc
@ Learn hidden process drives the @ Draw a topic, then a word for a token
obs.
campus = s § e Q somn e New Pork Times
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Probabilistic Topic Models - LDA

Bag of words Generative model
@ Infer topics of documents @ Topic proportion ~ Dir(«) for a doc
@ Learn hidden process drives the @ Draw a topic, then a word for a token
obs.
campus = € e Qs e New Pork Times
police At Florida State, Football Clouds Justice Topics
‘% ” witness ree—— .
%O’%‘r% 1 Ruseslrosgrodded s
campus campus
.police police ‘ OD
witness witness 7
y “Topic Proportion
campus 4
police
witness
Goal
campus
police
witness @ Topic-word matrix ‘ Plword = e;|topic = j] ‘
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Moments Matching

Goal: Linearly independent topic-word table

campus

E[word|topic = j] = Z]P[word = e;|topic = jle; =column j

police
1

witness
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Moments Matching

Goal: Linearly independent topic-word table

campus

E[word|topic = j] = Z]P[word = e;|topic = jle; =column j

police
1

witness

M;: Occurrence Frequency of Words

E[word] = ZIE[word|topic = j|P[topic = j]
campus
policeE = ﬁ + i + E
witness
S
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Moments Matching

Goal: Linearly independent topic-word table

campus

E[word|topic = j] = Z]P[word = e;|topic = jle; =column j

police
7

witness

M;: Occurrence Frequency of Words

E[word] = ZIE[word|topic = j|P[topic = j]
J

campus
poIiceE = E + i + i
witness
&

& (‘f’ .
& «° &

‘ No unique decomposition of vectors‘
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Moments Matching

Goal: Linearly independent topic-word table

campus

police
witness

E[word|topic = j] = Z]P’[word = e;|topic = jle; =column j

k3

M, Modified Co-occurrence Frequency of Word Pairs
E[word ® wordz] = Zl[i‘,[wordﬂtopic1 = j] ® E[wordz [topic, = j'|P[topic; = j, topicy = j’]

3,37
campus
police
witness
P 2 P
Q7 Q. &
& e
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Moments Matching

Goal: Linearly independent topic-word table

campus

E[word|topic = j] = Z]P[word = e;|topic = jle; =column j

police -
1

witness

M, Modified Co-occurrence Frequency of Word Pairs

E[word ® wordz] = ZIE[wordﬂtopicl = j] ® E[wordz [topic, = j'|P[topic; = j, topicy = j’]
3,3’

campus
police - + +
witness
S
&P & <
& «° &€

&«\Q & \@

Matrix decomposition recovers subspace, not actual model
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Moments Matching

Goal: Linearly independent topic-word table

Finda W [i-»i ﬁ-»i E-»E]suchthat i-Li-LE

Ms: Modified Co-occurrence Frequency of Word Pairs
E[word ® wordz] = ZIE[wordﬂtopicl = j] ® E[wordz [topic, = j'|P[topic; = j, topicy = j’]
3.3’

campus
police
witness

Q@Q & \@ 6“0

Many such W's, find one, project data with W‘
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Moments Matching

Goal: Linearly independent topic-word table

KnowaW[ ﬁ_>i -ﬁ i E-»E]suchthat FLELl

Ms;: Modified Co-occurrence Frequency of Word Triplets

Unique orthogonal tensor decomposition, project result with W7
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Moments Matching

Goal: Linearly independent topic-word table

KnowaW[ ﬁ_>i -ﬁ i E-»E]suchthat FLELl

Ms;: Modified Co-occurrence Frequency of Word Triplets

Tensor decomposition uniquely discovers the correct model ‘

Learning Topic Models through Matrix/Tensor Decomposition
26 /39



Mixed Membership Community Models

Mixed memberships

"

®
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Mixed Membership Community Models

Mixed memberships
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Mixed Membership Community Models

Mixed memberships

Z

o
O
o

Charlie| | | | y
O
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Outline

@© Introduction
@ Introduction of Method of Moments and Tensor Notations

© LDA and Community Models

@ Guaranteed Online Algorithm
@ Quantum Algorithms for Leading Eigenvector Computation

© Conclusion
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Guaranteed Online Tensor Decomposition
Model is uniquely identifiable! How to identify?
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Theorem: The proposed objective function has equivalent local optima.
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Guaranteed Online Tensor Decomposition
Model is uniquely identifiable! How to identify?

Online Tensor Decomposition
o Tensor T'=)a; ®a; ® a; ® a;, where |ja;|| =1,a; a; =0
i
Objective?

@ Objective min > T (wg, wi, g, uj) Non-convex!
Vi llug2=1 " %5

Theorem: The proposed objective function has equivalent local optima.

Saddle Point
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Theorem: For smooth, twice-diff fn. with non-degenerate saddle points,
noisy SGD converges to a local optimum in polynomial steps.
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Guaranteed Online Tensor Decomposition
Model is uniquely identifiable! How to identify?

Online Tensor Decomposition
o Tensor T'=)Ya; ® a; ® a; ® a;, where ||a;|| =1,aa; =0
i
Objective?

@ Objective min > T (wg, wi, g, uj) Non-convex!
Vi llug2=1 " %5

Theorem: The proposed objective function has equivalent local optima.

Saddle Point

LB,
AR LEBEKNN
AR SEKEKNH)

QR 000090
R oK

Will SGD work?

W%
AR

QUK
QR
K

Theorem: For smooth, twice-diff fn. with non-degenerate saddle points,
noisy SGD converges to a local optimum in polynomial steps.

Global Convergence Guarantee For Online Tensor Decomposition o 50



Why could we escape from saddle points?
Stochastic Gradient Descent with Noise

Saddle Point

4 LN
S5
%

7

@ Saddle point has 0 gradient

“Escaping From Saddle Points — Online Stochastic Gradient for Tensor Decomposition” by R. Ge, F. Huang, C. Jin, Y. Yuan,
COLT 2015.
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Why could we escape from saddle points?
Stochastic Gradient Descent with Noise

@ Saddle point has 0 gradient
@ Non-degenerate saddle: Hessian has & eigenvalue

@ Negative eigenvalue: direction of escape
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Why could we escape from saddle points?
Stochastic Gradient Descent with Noise
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@ Saddle point has 0 gradient
@ Non-degenerate saddle: Hessian has & eigenvalue

@ Negative eigenvalue: direction of escape

Noise could help!

“Escaping From Saddle Points — Online Stochastic Gradient for Tensor Decomposition” by R. Ge, F. Huang, C. Jin, Y. Yuan,
COLT 2015.
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Outline

@ Quantum Algorithms for Leading Eigenvector Computation
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First PCA

PCA problem
e Sample S = {z;}™,, where z; € R?

@ Q: Identifies the direction of the largest variance in the data?

Problem Formulation

Solving

max u'Au,
u€RY ||lul|2=1

m
where covariance matrix A = % S xix; '
i=1

Problem Regime

@ Assume 0 < A < I and s-sparse (i.e., nnz(each row or column) < s)
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Classical Algorithm

Spectral Gap
@ Spectral gap A = A — X

» ordered eigenvalues 1 > XA\ > ... 24 >0
» and corresponding eigenvectors uq, ..., Uuq.

Methods under Warm Start
@ Warm start: Initialization vy such that |< vp,u; >| > ¢ >0

@ |teration methods achieve € precision: < vg,u; >>1—¢€
AF (
> Power method 4r; takes oL log(ﬁ))
» Lanczos method or accelerated power method takes O(\j—dZ log(#))

* Replacing the monomial A* by its Chebyshev polynomial approximation

Question: Speedup from O(d) to poly(logd)?
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Quantum Speedup

Motivation

Quantum effects can achieve significant speedup.

Examples

@ Shor's algorithm
» exponential speed-up for factoring integers
o Grover's algorithm
» quadratic speed-up for searching in unstructured database
@ (Harrow, Hassidim, Lloyd '09) & (Childs, Kothari, Somma '17)

» Q(d) — poly(log d) for solving d-dimensional linear equation systems.
> weaker output requirement

* a quantum state whose vector representation is roughly the solution to
the linear equation system.
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Quantum Leading PCA

Input model

@ Quantum oracle which generates a quantum state whose vector
representation is vy and A.

Output model
@ A quantum state whose vector representation is vy,

Main Result
Under warm start | < vg,u; > | = ¢ > 0, there is a quantum algorithm
which prepares a quantum state with vector representation vy such that
< vg,u; >> 1 — € with probability at least 2/3
o using O(slog(s/pe)/pv/A) queries to quantum oracle Ua s, Ua e
@ O(1/¢) queries to Uy,

w. O(s(logdlog () + log3'5(ﬁ))/gb\/3) 2-qubit quantum gates in total.

Joint work with Tongyang Li and Xiaodi Wu.
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Intuition for Speedup

Chebyshev polynomials can be significantly accelerated
in quantum computation

@ Matrix power A¥b is the key
» Quantum-walk
* effectively constructs a degree-m Chebyshev polynomial of A/s.
» Quantum primitive: the linear combination of unitaries (LCU)

* effectively linearly combines these Chebyshev polynomials to derive the
desired approximation polynomial.

Quantum Computation for Linear Algebraic Problems
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Outline

© Conclusion
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Summary

Spectral methods reveal hidden structure

] "' '!""r

@ Text/Image processing

@ Social networks

@ Neuroscience, healthcare ...
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Summary

Spectral methods reveal hidden structure

@ Text/Image processing Yyttt r""

o 1

@ Social networks

@ Neuroscience, healthcare ...

Versatile for latent variable models

@ Flat model — hierarchical model

@ Sparse coding — convolutional
model

o Efficient, convergence guarantee @ - i-/;+
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Thank You

furongh@cs.umd.edu
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