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Success of Supervised Learning
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Success of Supervised Learning

Image classification Speech recognition Text processing

Key to Success

Deep composition of nonlinear units

Enormous labeled data

Computation power growth
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Machine Learning - Modern Challenges

Automated discovery of features and categories?

Real AI requires Unsupervised Learning

Filter bank learning Feature extraction Embeddings, Topics

Summarize key features in data
◮ State-of-the-art: Humans are better than machines
◮ Goal: Intelligent machines that summarize key features in data

Interpretable modeling and learning of the data
◮ Theoretically guaranteed learning
◮ Extracted features are interpretable
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Unsupervised Learning with Big Data

Curse of Dimensionality

More information → more unknowns/variables → challenging model

learning
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Unsupervised Learning with Big Data

Information Extraction

High dimension observation vs Low dimension representation

Cell Types

Topics

Communities

My Solution: A Unified Tensor Decomposition Framework
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App 1: Automated Categorization of Documents

Topics

Education

Crime

Sports

Document modeling

Observed: words in document corpus: search logs, emails etc

Hidden: (mixed) topics: personal interests, professional area etc
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App 2: Community Extraction From Connectivity Graph

Social Networks

Observed: network of social ties: friendships, transactions etc

Hidden: (mixed) groups/communities of social actors
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Tensor Methods Compared with Variational Inference

Learning Topics from PubMed on Spark: 8 million docs
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“Online Tensor Methods for Learning Latent Variable Models”, F. Huang, U. Niranjan, M. Hakeem, A. Anandkumar, JMLR14.
“Tensor Methods on Apache Spark”, F. Huang, A. Anandkumar, Oct. 2015.
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App 3: Cataloging Neuronal Cell Types In the Brain

Neuroscience

Observed: cellular-resolution brain slices

Hidden: neuronal cell types
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App 3: Cataloging Neuronal Cell Types In the Brain

Our method vs Average expression level [Grange 14’]
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k
Spatial point process (ours)

Average expression level ( )previous

Recovered known cell types

1 Interneurons

2 S1Pyramidal

3 Astrocytes

4 Ependymal

5 Microglia

6 Endothelial

7 Mural

8 Oligodendrocytes

“Discovering Neuronal Cell Types and Their Gene Expression Profiles Using a Spatial Point Process Mixture Model”, F. Huang,
A. Anandkumar, C. Borgs, J. Chayes, E. Fraenkel, M. Hawrylycz, E. Lein, A. Ingrosso, S. Turaga, NIPS 2015 BigNeuro workshop.
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App 4: Word Sequence Embedding Extraction

football

soccer

tree

Word Embedding

The weather is good.

Her life spanned years of 

incredible change for women.
Mary lived through an era of

liberating reform for women. 

Word Sequence Embedding

“Convolutional Dictionary Learning through Tensor Factorization”, by F. Huang, A. Anandkumar, In Proceedings of JMLR 2015.
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App 5: Human Disease Hierarchy Discovery
CMS: 1.6 million patients, 168 million diagnostic events, 11 k diseases.

Observed: co-occurrence of diseases on patients

Hidden: disease similarity/hierarchy
” Scalable Latent TreeModel and its Application to Health Analytics ” by F. Huang, N. U.Niranjan, I. Perros, R. Chen, J. Sun,
A. Anandkumar, NIPS 2015 MLHC workshop.
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Involve discovering the hidden and compact structure

that is embedded in the high-dimensional complex observed data

11 / 39



How to model hidden effects?

Basic Approach: mixtures/clusters

Hidden variable h is categorical.

Advanced: Probabilistic models

Hidden variable h has more general distributions.

Can model mixed memberships.

x1 x2 x3 x4 x5

h1

h2 h3

This talk: basic mixture model and some advanced models (topic model)

12 / 39



Challenges in Learning
Basic goal in all mentioned applications

Discover hidden structure in data: unsupervised learning.

Words

Topics

Choice Variable

life gene data DNA RNA

k1 k2 k3 k4 k5

h

A A A A A

Unlabeled data      Latent variable model Learning Algorithm Inference
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Challenges in Learning – find hidden structure in data

Words

Topics

Choice Variable

life gene data DNA RNA

k1 k2 k3 k4 k5

h

A A A A A

Unlabeled data    Latent variable model Tensor Decomposition Inference

= + +

Challenge: Conditions for Identifiability

Whether can model be identified given infinite computation and data?

Are there tractable algorithms under identifiability?

Challenge: Efficient Learning of Latent Variable Models

MCMC: random sampling, slow
◮ Exponential mixing time

Likelihood: non-convex, not scalable
◮ Exponential critical points

Efficient computational and sample complexities?

Guaranteed and efficient learning through spectral methods
13 / 39



Unsupervised Learning via Probabilistic Models

Words

Topics

Choice Variable

life gene data DNA RNA

k1 k2 k3 k4 k5

h

A A A A A

Unlabeled data    Latent variable model Tensor Decomposition Inference

= + +

tensor decomposition → correct model
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Unsupervised Learning via Probabilistic Models

Words

Topics

Choice Variable

life gene data DNA RNA

k1 k2 k3 k4 k5

h

A A A A A

Unlabeled data    Latent variable model Tensor Decomposition Inference

= + +

tensor decomposition → correct model

Contributions

Guaranteed online algorithm with global convergence guarantee

Highly scalable, highly parallel, dimensionality reduction

Tensor library on CPU/GPU/Spark

Interdisciplinary applications

Extension to model with group invariance
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Outline

1 Introduction

2 Introduction of Method of Moments and Tensor Notations

3 LDA and Community Models
From Data Aggregates to Model Parameters
Guaranteed Online Algorithm

4 Quantum Algorithms for Leading Eigenvector Computation

5 Conclusion
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Method-of-Moments At A Glance
1 Determine function of model parameters θ estimatable from

observable data:
◮ Moments

Eθ[f(X)]

2 Form estimates of moments using data (iid samples {xi}ni=1):
◮ Empirical Moments

Ê[f(X)]

3 Solve the approximate equations for parameters θ:
◮ Moment matching

Eθ[f(X)]
n→∞
= Ê[f(X)]

Toy Example

How to estimate Gaussian variable, i.e., (µ,Σ),
given iid samples {xi}ni=1 ∼ N (µ,Σ2)?
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What is a tensor?

Multi-dimensional Array

Tensor - Higher order matrix

The number of dimensions is called tensor order.
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Slices

Horizontal slices Lateral slices Frontal slices
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Tensor Product

=

[a⊗ b]i1,i2
ai1

bi2

=

[a⊗ b⊗ c]i1,i2,i3

ai1

bi2
ci3

[a⊗ b]i1,i2 = ai1bi2

Rank-1 matrix

[a⊗ b⊗ c]i1,i2,i3 = ai1bi2ci3

Rank-1 tensor
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Tensors in Method of Moments
Matrix: Pair-wise relationship

Signal or data observed x ∈ R
d

Rank 1 matrix: [x⊗ x]i,j = xixj

Aggregated pair-wise relationship

M2 = E[x⊗ x]

=
xi

xj[x⊗x]i,j

Tensor: Triple-wise relationship or higher

Signal or data observed x ∈ R
d

Rank 1 tensor:
[x⊗ x⊗ x]i,j,k = xixjxk

Aggregated triple-wise relationship

M3 = E[x⊗ x⊗ x] = E[x⊗3]

=

[x⊗x⊗x]i,j,k

xi
xj

xk
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CP decomposition

X =
R∑

h=1

ah ⊗ bh ⊗ ch

Summation of rank-1 tensors
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Why are tensors powerful?

Matrix Orthogonal Decomposition

Not unique without eigenvalue gap[
1 0
0 1

]
= e1e

⊤
1
+ e2e

⊤
2
= u1u

⊤
1
+ u2u

⊤
2 e1

e2

u1 = [
√
2
2 , −

√
2

2 ]

u2 = [
√
2
2 ,

√
2
2 ]
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Outline
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Probabilistic Topic Models - LDA

Bag of words

Infer topics of documents

Learn hidden process drives the
obs.

Generative model

Topic proportion ∼ Dir(α) for a doc

Draw a topic, then a word for a token

Topics

Topic Proportion

police

witness

campus

police

witness

campus

police

witness

campus
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Moments Matching

Goal: Linearly independent topic-word table
campus

police

witness

E[word|topic = j] =
∑

i

P[word = ei|topic = j]ei =column j
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Moments Matching

Goal: Linearly independent topic-word table
campus
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Moments Matching

Goal: Linearly independent topic-word table

Find a W W W W such that

M2: Modified Co-occurrence Frequency of Word Pairs
E[word1 ⊗ word2] =

∑

j,j′

E[word1|topic1 = j]⊗ E[word2|topic2 = j′]P[topic
1
= j, topic

2
= j′]
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Many such W ’s, find one, project data with W
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Moments Matching

Goal: Linearly independent topic-word table

Know a W W W W such that

M3: Modified Co-occurrence Frequency of Word Triplets

= + +
W

W

W

Unique orthogonal tensor decomposition, project result with W †
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Moments Matching

Goal: Linearly independent topic-word table

Know a W W W W such that

M3: Modified Co-occurrence Frequency of Word Triplets

= + +
W

W

W

Tensor decomposition uniquely discovers the correct model

Learning Topic Models through Matrix/Tensor Decomposition
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Mixed Membership Community Models

Mixed memberships
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Mixed Membership Community Models

Mixed memberships

What ensures guaranteed learning?
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Outline
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Guaranteed Online Tensor Decomposition
Model is uniquely identifiable! How to identify?
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Objective min
∀i,‖ui‖2=1

∑
i 6=j

T (ui, ui, uj , uj) Non-convex!

Theorem: The proposed objective function has equivalent local optima.

Will SGD work?

ÆÇddle Point

Theorem: For smooth, twice-diff fn. with non-degenerate saddle points,
noisy SGD converges to a local optimum in polynomial steps.

Global Convergence Guarantee For Online Tensor Decomposition
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Why could we escape from saddle points?
Stochastic Gradient Descent with Noise

ÈÉddle Point

Saddle point has 0 gradient

“Escaping From Saddle Points — Online Stochastic Gradient for Tensor Decomposition”,by R. Ge, F. Huang, C. Jin, Y. Yuan,
COLT 2015.
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Why could we escape from saddle points?
Stochastic Gradient Descent with Noise

escape

stuck

Saddle point has 0 gradient

Non-degenerate saddle: Hessian has ± eigenvalue

Negative eigenvalue: direction of escape

Noise could help!

“Escaping From Saddle Points — Online Stochastic Gradient for Tensor Decomposition”,by R. Ge, F. Huang, C. Jin, Y. Yuan,
COLT 2015.
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First PCA

PCA problem

Sample S = {xi}mi=1, where xi ∈ R
d

Q: Identifies the direction of the largest variance in the data?

Problem Formulation

Solving
max

u∈Rd,‖u‖2=1
u⊤Au,

where covariance matrix A = 1
m

m∑
i=1

xixi
⊤

Problem Regime

Assume 0 � A � I and s-sparse (i.e., nnz(each row or column) ≤ s)
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Classical Algorithm

Spectral Gap
Spectral gap ∆ = λ1 − λ2

◮ ordered eigenvalues 1 ≥ λ1 ≥ . . . λd ≥ 0
◮ and corresponding eigenvectors u1, . . . ,ud.

Methods under Warm Start
Warm start: Initialization v0 such that |< v0,u1 >| > φ > 0

Iteration methods achieve ǫ precision: < vk,u1 >≥ 1− ǫ

◮ Power method A
k
v0

‖Akv0‖ takes O( sd
∆

log( 1

φǫ
))

◮ Lanczos method or accelerated power method takes O( sd√
∆
log( 1

φǫ
))

⋆ Replacing the monomial Ak by its Chebyshev polynomial approximation

Question: Speedup from O(d) to poly(log d)?
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Quantum Speedup

Motivation

Quantum effects can achieve significant speedup.

Examples

Shor’s algorithm
◮ exponential speed-up for factoring integers

Grover’s algorithm
◮ quadratic speed-up for searching in unstructured database

(Harrow, Hassidim, Lloyd ’09) & (Childs, Kothari, Somma ’17)
◮ Ω(d) → poly(log d) for solving d-dimensional linear equation systems.
◮ weaker output requirement

⋆ a quantum state whose vector representation is roughly the solution to

the linear equation system.
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Quantum Leading PCA

Input model

Quantum oracle which generates a quantum state whose vector
representation is v0 and A.

Output model

A quantum state whose vector representation is vk

Main Result

Under warm start | < v0,u1 > | = φ > 0, there is a quantum algorithm
which prepares a quantum state with vector representation vk such that
< vk,u1 >≥ 1− ǫ with probability at least 2/3

using O(s log(s/φǫ)/φ
√
∆) queries to quantum oracle UA,s, UA,e

O(1/φ) queries to Uv0

w. O(s(log d log( s
φǫ
) + log3.5( s

φǫ
))/φ

√
∆) 2-qubit quantum gates in total.

Joint work with Tongyang Li and Xiaodi Wu.
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Intuition for Speedup

Chebyshev polynomials can be significantly accelerated
in quantum computation

Matrix power Akb is the key
◮ Quantum-walk

⋆ effectively constructs a degree-m Chebyshev polynomial of A/s.

◮ Quantum primitive: the linear combination of unitaries (LCU)
⋆ effectively linearly combines these Chebyshev polynomials to derive the

desired approximation polynomial.

Quantum Computation for Linear Algebraic Problems
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Summary

Spectral methods reveal hidden structure

Text/Image processing

Social networks

Neuroscience, healthcare ...
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Summary

Spectral methods reveal hidden structure

Text/Image processing

Social networks

Neuroscience, healthcare ...

Versatile for latent variable models

Flat model → hierarchical model

Sparse coding → convolutional
model

Efficient, convergence guarantee

= + +

= + + = + + = + +

M3 f1 sf1 f2 sf2

= +...+++...+

escape

stuck
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Thank You

furongh@cs.umd.edu
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