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A	brief	history	of	results	in	quantum	computing

• Simulating	quantum	systems	was	the	main	motivation	behind	
Feynman’s	idea	of	a	quantum	computer	(1982).

• For	example,	algorithms	for	simulating	the	dynamics	of	n spin	
systems	with	classical	computers	have	complexity	that	is	
exponential	in	n.	Quantum	algorithms,	in	principle,	have	only	
complexity	that	is	polynomial	in	n.
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• Simulating	quantum	systems	was	the	main	motivation	behind	
Feynman’s	idea	of	a	quantum	computer	(1982).

• For	example,	algorithms	for	simulating	the	dynamics	of	n spin	
systems	with	classical	computers	have	complexity	that	is	
exponential	in	n.	Quantum	algorithms,	in	principle,	have	only	
complexity	that	is	polynomial	in	n.

• Peter	Shor	descubre un	algoritmo cuántico para	factorizar enteros
con	aplicaciones importantes a	cybersecurity,	resultando en una
reducción exponencial de	la	complejidad clásica (1994).	Si	bien
computadoras cuánticas de	gran	tamaño no	existen,	este fue el	
principal	resultado que	disparó investigación en algoritmos
cuánticos

• L.	Grover	discovers	a	quantum	algorithm	for	unstructured	search	
resulting	in	a	polynomial	(quadratic)	quantum	speedup	(1997).A	
main	idea	in	Grover’s	result	(amplitude	amplification)	has	been	
extensively	used	in	other	quantum	algorithms	for	problems	such	as	
optimization,	search,	and	more.

Other	quantum	algorithms	for	linear	algebra	problems?
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• There	is	a	variety	of	classical	algorithms	to	solve	this	problem.	
Nevertheless,	even	when	the	matrix	A and	vector	ƃ are	sparse,	the	
complexity	of	``exact’’	classical	algorithms	is	at	least	linear	in	N.

• A	result	[HHL08]:	Quantum	computers	can	prepare	a	quantum	state	
proportional	to	the	solution	of	the	system	in	time	that	is	polynomial	in	the	
condition	number,	inverse	of	precision,	and	the	logarithm	of	the	dimension	
(under	some	assumptions).

• Note:	This	is	a	somewhat	different	problem	(QLSP)	and	classical	algorithms	
may	do	better	in	this	case.	However,	the	QLSP	is	BQP-Complete.
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Hamiltonian	simulation

Note:	Recent	advances	in	Hamiltonian	simulation	resulted	in

CA(t, ✏) = ˜O(tsTA log(t/✏))

• Complexity	almost	linear	in	the	evolution	time
• Complexity	is	polylogarithmic in	the	inverse	of	a	precision	parameter

D.	Berry,	A.	Childs,	R.	Cleve,	R.	Kothari,	and	RDS,	PRL	114,	090502	(2015)
D.	Berry,	A.	Childs,	and	R.	Kothari,	FOCS	2015,	792	(2015)
G.H.	Low	and	I.	Chuang,	PRL	118,	010501	(2017)



Quantum	Linear	System	Problem	(QLSP)
Some	applications:

• In	physics,	where	the	goal	is	to	compute	the	expectation	value	of	the	inverse	
of	a	matrix.	This	idea	was	used	in	[1]	for	obtaining	the	resistance	of	a	network.

• In	stat	mech,	where,	e.g.,	estimating	the		hitting	time	of	a	Markov	chain	also	
reduces	to	computing	the	expectation	value	of	the	inverse	of	a	matrix	[2]

• In	ML,	for	solving	problems	related	to	least-squares	estimation	[3],	by	
applying	the	pseudoinverse:

• For	solving	certain	linear	differential	equations	[4]:

[1]	G.	Wang,	arXiv:1311.1851	(2013).	[2]	A.	Chowdhury	and	R.	Somma,	QIC	17,	0041	(2017)
[3]	N.	Wiebe,	D.	Braun,	and	S.	Lloyd,	PRL	109,	050505	(2012).	
[4]	D.	Berry,	A.	Childs,	A.	Ostrander,	and	G.	Wang,	CMP	356,	1057	(2017)



Quantum	Linear	System	Problem	(QLSP)

A	note: Even	for	those	applications,	a	number	of	assumptions	must	be	made	in	
order	to	obtain	quantum	speedups.	These	assumptions	include	efficient	
preparation	of	certain	states	(of	exp many	amplitudes),	nice	scaling	of	the	
condition	number,	and	solving	certain	problems	like	computing	expectation	
values.	For	these	reasons,	shown	quantum	speedups	are	typically	polynomial.



The	HHL	Algorithm	for	the	QLSP	[5]

[5]	Harrow,	Hassidim,	Lloyd,	PRL	103,	150502	(2009)
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• Note	that	the	best	Hamiltonian	simulation	methods	have	query	and	gate	
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[5]	Harrow,	Hassidim,	Lloyd,	PRL	103,	150502	(2009)
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This	register	contains	the	eigenvalue	estimate	(superposition):

• It	suffices	to	have	the	estimate	with	relative	precision	𝜖
• Order	log(𝜅/𝜖)	ancillary	qubits	
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[5]	Harrow,	Hassidim,	Lloyd,	PRL	103,	150502	(2009)

Roughly,	the	scaling	of	the	HHL	algorithm	can	be	analyzed	from	the	worst	case:

|bi = (1/)|v1/i+
p

1� 1/2|v1i

The	action	of	1/ A will	roughly	create	the	equal	superposition	state,	so	both	are	
equally	important

For	the	desired	precision	we	need	to	evolve	with	A for	time	of	order	𝜅/𝜖

The	action	of	1/ (𝜅 A )	on	the	state	reduces	its	amplitude	by	order	1/ 𝜅 and	order	𝜅
amplitude	amplification	rounds	are	needed

From	here	we	see	that	we	need	to	evolve	with	A for	time	that	is,	at	least,	order	𝜅2/𝜖
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How	can	we	improve	this	time	complexity	to	something	that	is	almost	linear	in	the	
condition	number?
One	answer	is	via	Variable	Time	Amplitude	Amplification	(VTAA)	[6]
The	rough	idea	is	as	follows	(again,	considering	the	worst	case):

• First	we	do	a	bad-precision	phase	estimation	to	distinguish	large	from	small	
eigenvalues.	This	may	be	done	evolving	with	A for	time	independent	of	𝜅

• Then	we	implement	a	rough	approximation	of	1/	𝜅 A to	eigenstates	of	large	
eigenvalue

• We	need	order	𝜅 amplitude	amplification	steps
• We	implement	an	accurate	approximation	of	1/ 𝜅 A to	eigenstates	of	small	

eigenvalue
• Amplitude	amplification	for	order	1	steps
• Undo	phase	estimation	or	apply	the	Fourier	transform

|bi = (1/)|v1/i+
p
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[6]	A.	Ambainis,	STACS	14,	636	(2012)

How	can	we	improve	this	time	complexity	to	something	that	is	almost	linear	in	the	
condition	number?
One	answer	is	via	Variable	Time	Amplitude	Amplification	(VTAA)	[6]
The	rough	idea	is	as	follows	(again,	considering	the	worst	case):

• First	we	do	a	bad-precision	phase	estimation	to	distinguish	large	from	small	
eigenvalues.	This	may	be	done	evolving	with	A for	time	independent	of	𝜅

• Then	we	implement	a	rough	approximation	of	1/	𝜅 A to	eigenstates	of	large	
eigenvalue

• We	need	order	𝜅 amplitude	amplification	steps
• We	implement	an	accurate	approximation	of	1/ 𝜅 A to	eigenstates	of	small	

eigenvalue
• Amplitude	amplification	for	order	1	steps
• Undo	phase	estimation	or	apply	the	Fourier	transform

The	complexity	of	VTAA	in	terms	of	precision	is	worse	than	that	of	HHL

|bi = (1/)|v1/i+
p

1� 1/2|v1i
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• I	will	present	two	quantum	algorithms	for	the	QLSP	that	improve	previous	results	
in	different	ways:

[7]	There	exists	a	quantum	algorithm	that	solves	the	QLSP	with	complexity
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This	talk:	two	quantum	algorithms	for	the	QSLP

• I	will	present	two	quantum	algorithms	for	the	QLSP	that	improve	previous	results	
in	different	ways:

[7]	There	exists	a	quantum	algorithm	that	solves	the	QLSP	with	complexity

• This	results	in	an	exponential	improvement	on	the	precision	parameter
• It	can	be	improved	using	a	version	of	VTAA	to:

[7]	A.	Childs,	R.	Kothari,	RDS,	SIAM	J.	Comp.	46,	1920	(2017).
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˜O [(Tb + CA( log(/✏, ✏/))]

˜O [Tb + CA( log(/✏, ✏))]
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• The	previous	result	allowed	us	to	prove	a	polynomial	quantum	speedup	for	hitting	
time	estimation	in	terms	of	the	spectral	gap	of	a	Markov	chain	and	precision	(A.	
Chowdhury,	R.D.	Somma,	QIC	17,	0041	(2017)).

• Having	a	small	complexity	dependence	on	precision	is	important	for,	e.g.,	
computing	expectation	values	of	observables	at	the	quantum	metrology	limit.	

Why	these	improvements	are	important?
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• The	method	is	very	different	and	based	on	adiabatic	evolutions.	It	does	not	
require	of	complicated	subroutines	such	as	phase	estimation	and	variable	time	
amplitude	amplification,	therefore	reducing	the	number	of	ancillary	qubits	
substantially.

[8]	Y.	Subasi,	RDS,	D.	Orsucci,	arXiv:1805.10549	(2018).
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• Phase	estimation	and	VTAA	require	several	ancillary	qubits	(beyond	those	needed	
for	Hamiltonian	simulation)

• Within	two	weeks	of	posting	our	result,	a	group	implemented	our	algorithm	in	
NMR,	claiming	that	it	is	the	largest	simulated	instance	so	far	(8x8)	[9]

Why	this	improvement	is	important?

[9]	J.	Wen,	et.al.,	arXiv:1806.0329	(2018)
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• So	far	we	approximated	1/A,	within	the	desired	accuracy,	by	a	finite	linear	
combination	of	unitaries.	Each	unitary	corresponds	to	evolving	with	A for	certain	
time,	and	the	max	evolution	time	is	almost	linear	in	the	condition	number
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Suppose we want to implement the operator �1U1 + �2U2 to some state | i
where �i � 0, �1 + �2 = 1, and Ui unitary
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• We	use	the	LCU	approach	to	implement	the	Fourier	approximation	of	1/A

• Note:	We	assume	that	the	gate	complexity	of	the	operation	V	is	small	with	
respect	to	other	complexities

• Adding	up	all	the	coefficients	in	the	linear	combination	of	unitaries,	we	obtain

• This	is	also	the	number	of	amplitude	amplification	rounds

• Then,	the	overall	complexity	of	this	approach	is

� = Õ()

This	is	almost	quadratic	in	the	condition	number.	To	improve	it	to	almost	linear	
we	use	a	version	of	VTAA	that	doesn’t	ruin	the	logarithmic	scaling	in	precision
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• VTAA	for	HHL	relies	heavily	on	phase	estimation,	bringing	a	prohibitive	
complexity	dependence	on	precision	

• But	in	our	case	we	only	need	to	distinguish	the	regions	for	the	eigenvalues	with	
high	confidence,	so	the	scaling	in	precision	is	logarithmic
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region	(replacing	the	condition	number)
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• VTAA	for	HHL	relies	heavily	on	phase	estimation,	bringing	a	prohibitive	
complexity	dependence	on	precision	

• But	in	our	case	we	only	need	to	distinguish	the	regions	for	the	eigenvalues	with	
high	confidence,	so	the	scaling	in	precision	is	logarithmic

• The	final	algorithm	is	VTAA	applied	to	another	algorithm	that	is	built	upon	a	
sequence	of	steps.

• At	each	step	we	do	the	following:	i)	We	determine	the	region	of	the	eigenvalue	
with	high	confidence.	ii)	We	apply	1/A	within	the	necessary	precision	for	that	
region	(replacing	the	condition	number)

• The	overall	complexity	of	this	approach	is

Using	the	best	Hamiltonian	simulation	methods,	this	is	almost	linear	in	the	condition	
number	and	polylog in	inverse	of	precision
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• The	idea	here	is	to	prepare	the	eigenstate	of	a	Hamiltonian	by	preparing	a	
sequence	continuously	related	eigenstates	of	a	family	of	Hamiltonians

• We	want	the	eigenstate	to	be	the	desired	quantum	state	(after	tracing	out	
ancillary	systems)

The	following	properties	can	be	proven:

• The	desired	state	is	the	unique	ground	state	of	H
• The	eigenvalue	gap	is	order	1/ 𝜅2

• We	now	seek	the	family	of	interpolating	Hamiltonians
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• We	assume	for	the	moment	that	A>1/ 𝜅

• We	define	the	interpolating	matrix

• Similarly,	we	define

• This	is	like	solving	an	increasingly	difficult	system	of	linear	equations!	

• The	minimum	eigenvalue	gap	is	order		1/	𝜅2 and	the	length	of	the	path	L is	log(𝜅)
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points,	we	can	prepare	the	related	eigenstates	with	high	probability
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• The	strong	dependence	of	the	evolution	time	with	the	spectral	gap	suggests	
one	to	consider	other	Hamiltonians	that	have	the	same	eigenstate	but	a	larger	
eigenvalue	gap

• For	this	problem,	spectral	gap	amplification	[10]	is	useful:

H(s) ! H 0(s) = B†(s)⌦ �� +B(s)⌦ �+ =

✓
0 B(s)

B†(s) 0

◆
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Let |x(s)i be the eigenstate of 0-eigenvalue of H(s).

Then, |x(s)i|1i is an eigenstate of 0-eigenvalue of H 0
(s).

This eigenstate is separated from others by an eigenvalue gap
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• Note	that	the	path	length	did	not	change.	The	only	change	for	the	RM	is	the	
use	of	a	different	Hamiltonian.

H(s) ! H 0(s) = B†(s)⌦ �� +B(s)⌦ �+ =

✓
0 B(s)

B†(s) 0

◆

Let |x(s)i be the eigenstate of 0-eigenvalue of H(s).

Then, |x(s)i|1i is an eigenstate of 0-eigenvalue of H 0
(s).

This eigenstate is separated from others by an eigenvalue gap

p
�(s)



The	randomization	method	for	the	QLSP	[]

• Using	the	randomization	method	with	the	new	Hamiltonian,	the	expected	
evolution	time	is

TRM = O
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• Using	the	randomization	method	with	the	new	Hamiltonian,	the	expected	
evolution	time	is

• The	case	of	non-positive	matrix	A can	be	analyzed	similarly	using

TRM = O

✓
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✏
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The	randomization	method,	the	QLSP,	and	the	gate	model

For A > 0, the Hamiltonian is H 0(s) = (I � |bihb|)((1� s)I + sA)�� +H.c.
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For A > 0, the Hamiltonian is H 0(s) = (I � |bihb|)((1� s)I + sA)�� +H.c.

If |bi is sparse and A is sparse, then H 0
(s) is also sparse

We	can	use	a	Hamiltonian	simulation	method	to	build	a	quantum	circuit	that	
simulates	the	evolution.	The	quantum	circuit	will	use	queries.

• The	complexity	in	terms	of	queries	for															is	

• The	complexity	in	terms	of	queries	for	A is	almost	order

|bihb| Õ(Tb/✏)

CA(/✏, ✏)
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If |bi is sparse and A is sparse, then H 0
(s) is also sparse

• The	scaling	in	the	precision	parameter	can	be	done	polyligarithmic by	using	
faster	methods	for	eigenpath traversal	[11]
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Some	conclusions	and	observations

• Quantum	computing	seems	promising.	Several	quantum	algorithms	for	
problems	in	linear	algebra	with	significant	speedups	exist

• I	presented	quantum	algorithms	to	solve	the	quantum	linear	systems	
problem.	The	techniques	can	be	generalized	to	apply	other	operators	
(other	than	the	inverse	of	a	matrix)	to	quantum	states.

• The	advantages	of	the	first	algorithm	are	in	that	the	complexity	
dependence	on	precision	is	only	polylogarithmic,	exponentially	
improving	previous	algorithms	for	this	problem

• The	advantages	of	the	second	algorithm	are	in	that	it	doesn’t	require	
many	ancillary	qubits	and	the	problem	reduces	to	a	simple	Hamiltonian	
simulation	problem

• It	would	be	important	to	understand	the	applicability	of	this	algorithm	to	
scientific	problems	beyond	the	ones	I	mentioned.	How	important	are	the	
problems	and	algorithms?


