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Machine learning

Classical machine learning

Grand goal: enable AI systems to improve themselves

Practical goal: learn“something” from given data

Recent success: deep learning is extremely good at image recognition, natural
language processing, even the game of Go

Why the recent interest? Flood of available data, increasing computational
power, growing progress in algorithms

Quantum machine learning

What can quantum computing do for machine learning?

The learner will be quantum, the data may be quantum

Some examples are known of reduction in time complexity:

clustering (Äımeur et al. ’13)
Principal component analysis (Lloyd et al. ’13)
perceptron learning (Wiebe et al. ’16)
recommendation systems (Kerenidis & Prakash ’16)
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Learning using classical examples

Basic definitions

Concept class C: collection of Boolean functions on n bits (Known)

Target concept c : some function c ∈ C (Unknown)

Distribution D : {0, 1}n → [0, 1]

Labeled example for c ∈ C: (x , c(x)) where x ∼ D
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Quantum learning using quantum examples

Learner is quantum:

Data is quantum: Bshouty-Jackson’95 introduced a quantum
example as a superposition∑

x∈{0,1}n

√
D(x) |x , c(x)〉

Measuring this state gives a (x , c(x)) with probability D(x),
so quantum examples are at least as powerful as classical



5/ 18

Quantum learning using quantum examples

Learner is quantum:

Data is quantum: Bshouty-Jackson’95 introduced a quantum
example as a superposition∑

x∈{0,1}n

√
D(x) |x , c(x)〉

Measuring this state gives a (x , c(x)) with probability D(x),
so quantum examples are at least as powerful as classical



5/ 18

Quantum learning using quantum examples

Learner is quantum:

Data is quantum: Bshouty-Jackson’95 introduced a quantum
example as a superposition∑

x∈{0,1}n

√
D(x) |x , c(x)〉

Measuring this state gives a (x , c(x)) with probability D(x),
so quantum examples are at least as powerful as classical



5/ 18

Quantum learning using quantum examples

Learner is quantum:

Data is quantum: Bshouty-Jackson’95 introduced a quantum
example as a superposition∑

x∈{0,1}n

√
D(x) |x , c(x)〉

Measuring this state gives a (x , c(x)) with probability D(x),

so quantum examples are at least as powerful as classical



5/ 18

Quantum learning using quantum examples

Learner is quantum:

Data is quantum: Bshouty-Jackson’95 introduced a quantum
example as a superposition∑

x∈{0,1}n

√
D(x) |x , c(x)〉

Measuring this state gives a (x , c(x)) with probability D(x),
so quantum examples are at least as powerful as classical



6/ 18

Motivating question for this talk

Fix a concept class C, distribution D : {0, 1}n → [0, 1]

Question

Understanding the concept classes C and distributions D where fewer
quantum examples suffice for a quantum learner
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Distribution (in)dependent PAC learning

Focus on Probably Approximately Correct (PAC) model of learning

Fix C ⊆ {c : {0, 1}n → {0, 1}} and D : {0, 1}n → [0, 1]

Using i.i.d. labeled examples, learner for C should output
hypothesis h that is close to c w.r.t. D, i.e.,
errD(c , h) = Prx∼D [c(x) 6= h(x)] should be small

Distribution-dependent learning (for a fixed D)

An algorithm (ε, δ)-learns C under D if:

∀c ∈ C : Pr[ errD(c , h) ≤ ε︸ ︷︷ ︸
Approximately Correct

] ≥ 1− δ︸ ︷︷ ︸
Probably

PAC learning (Distribution-independent learning for every D)

An algorithm (ε, δ)-PAC-learns C if:

∀D ∀c ∈ C : Pr[ errD(c , h) ≤ ε︸ ︷︷ ︸
Approximately Correct

] ≥ 1− δ︸ ︷︷ ︸
Probably
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Complexity of learning

How to measure the efficiency of the classical or quantum learner?

Sample complexity: number of labeled examples used by learner

Time complexity: number of time-steps used by learner

In this talk

Strengths of quantum examples

ACLW’18: Sample complexity of learning Fourier-sparse Boolean
functions under uniform D

Bshouty-Jackson’95: Quantum polynomial time learnability of DNFs
under uniform D

ACKW’18: Quantum examples can help the coupon collector

Weaknesses of quantum examples

AW’17: Quantum examples are not more powerful than classical
examples for PAC learning
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Fourier sampling: a useful trick under uniform D

Let c : {0, 1}n → {−1, 1}. Then the Fourier coefficients are

ĉ(S) =
1

2n

∑
x∈{0,1}n

c(x)(−1)S·x for all S ∈ {0, 1}n

Parseval’s identity:
∑

S ĉ(S)2 = Ex [c(x)2] = 1

So {ĉ(S)2}S forms a probability distribution

Given quantum example under uniform D:

1√
2n

∑
x

|x , c(x)〉 Hadamard−→
∑
S

ĉ(S) |S 〉

Measuring allows to sample from the Fourier distribution {ĉ(S)2}S
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So {ĉ(S)2}S forms a probability distribution
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Applications of Fourier sampling

Consider the concept class of linear functions C1 = {cS (x) = S · x}S∈{0,1}n

Classical: Ω(n) classical examples needed

Quantum: 1 quantum example suffices to learn C1 (Bernstein-Vazirani’93)

Consider C2 = {c is a `-junta}, i.e., c(x) depends only on ` bits of x

Classical: Efficient learning is notoriously hard for ` = O(log n) and uniform D

Quantum: C2 can be exactly learnt using Õ(2`) quantum examples and in time

Õ(n2` + 22`) (Atıcı-Servedio’09)

Generalizing both these concept classes?

Definition: We say c is k-Fourier sparse if |{S : ĉ(S) 6= 0}| ≤ k.

Note that C1 is 1-Fourier sparse and C2 is 2`-Fourier sparse

Consider the concept class C = {c : {0, 1}n → {−1, 1} : c is k-Fourier sparse}

Observe that C1 ⊆ C. C contains linear functions
Observe that C2 ⊆ C. C contains (log k)-juntas



10/ 18

Applications of Fourier sampling

Consider the concept class of linear functions C1 = {cS (x) = S · x}S∈{0,1}n

Classical: Ω(n) classical examples needed

Quantum: 1 quantum example suffices to learn C1 (Bernstein-Vazirani’93)

Consider C2 = {c is a `-junta}, i.e., c(x) depends only on ` bits of x

Classical: Efficient learning is notoriously hard for ` = O(log n) and uniform D

Quantum: C2 can be exactly learnt using Õ(2`) quantum examples and in time
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Õ(n2` + 22`) (Atıcı-Servedio’09)

Generalizing both these concept classes?

Definition: We say c is k-Fourier sparse if |{S : ĉ(S) 6= 0}| ≤ k.
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Learning C = {c is k-Fourier sparse}

Exact learning C under the uniform distribution D

Classically (Haviv-Regev’15): Θ̃(nk) classical examples (x , c(x)) are necessary
and sufficient to learn the concept class C
Quantumly (ACLW’18): Õ(k1.5) quantum examples 1√

2n

∑
x |x , c(x)〉 are

sufficient to learn C (independent of the universe size n)

Ω̃(k) examples are necessary to learn C

Sketch of upper bound

Use Fourier sampling to sample S ∼ {ĉ(S)2}S
Collect Ss until the learner learns the Fourier span of c, V = span{S : ĉ(S) 6= 0}

Suppose dim(V) = r , then Õ(rk) quantum examples suffice to find V

Use the result of [HR’15] to learn c ′ completely using Õ(rk) classical examples

Since r ≤ Õ(
√
k) for every c ∈ C [Sanyal’15], we get Õ(k1.5) upper bound
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Collect Ss until the learner learns the Fourier span of c, V = span{S : ĉ(S) 6= 0}
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Suppose dim(V) = r , then Õ(rk) quantum examples suffice to find V

Use the result of [HR’15] to learn c ′ completely using Õ(rk) classical examples
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Suppose dim(V) = r , then Õ(rk) quantum examples suffice to find V

Use the result of [HR’15] to learn c ′ completely using Õ(rk) classical examples
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Suppose dim(V) = r , then Õ(rk) quantum examples suffice to find V

Use the result of [HR’15] to learn c ′ completely using Õ(rk) classical examples
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Learning Disjunctive normal Forms (DNF)

DNFs

Simply an OR of AND of variables. For example, (x1 ∧ x4 ∧ x3) ∨ (x4 ∧ x6 ∧ x7 ∧ x8)

We say a DNF on n variables is an s-term DNF if number of clauses is ≤ s

Learning C = {c is an s-term DNF in n variables} under uniform D

Classically: Efficient learning using examples is a longstanding open question.
Best known upper bound is nO(log n) [Verbeurgt’90]

Quantumly: Bshouty-Jackson’95 gave a polynomial-time quantum algorithm!

Proof sketch of quantum upper bound

Structural property: if c is an s-term DNF, then there exists U s.t. |ĉ(U)| ≥ 1
s

Fourier sampling! Sample T ∼ {ĉ(T )2}T , poly(s) many times to see such a U

Construct a “weak learner” who outputs χU s.t. Pr[χU(x) = c(x)] = 1
2

+ 1
s

Not good enough! Want an hypothesis that agrees with c on most inputs x ’s

Boosting: Run weak learner many times in some manner to obtain a strong
learner who outputs h satisfying Pr[h(x) = c(x)] ≥ 2/3
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Fourier sampling! Sample T ∼ {ĉ(T )2}T , poly(s) many times to see such a U

Construct a “weak learner” who outputs χU s.t. Pr[χU(x) = c(x)] = 1
2

+ 1
s

Not good enough! Want an hypothesis that agrees with c on most inputs x ’s

Boosting: Run weak learner many times in some manner to obtain a strong
learner who outputs h satisfying Pr[h(x) = c(x)] ≥ 2/3



12/ 18

Learning Disjunctive normal Forms (DNF)

DNFs

Simply an OR of AND of variables. For example, (x1 ∧ x4 ∧ x3) ∨ (x4 ∧ x6 ∧ x7 ∧ x8)

We say a DNF on n variables is an s-term DNF if number of clauses is ≤ s

Learning C = {c is an s-term DNF in n variables} under uniform D

Classically: Efficient learning using examples is a longstanding open question.
Best known upper bound is nO(log n) [Verbeurgt’90]

Quantumly: Bshouty-Jackson’95 gave a polynomial-time quantum algorithm!

Proof sketch of quantum upper bound

Structural property: if c is an s-term DNF, then there exists U s.t. |ĉ(U)| ≥ 1
s
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s
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Pretty good measurement for state identification

Consider a concept class C consisting of n-bit Boolean functions.
Let D : {0, 1}n → [0, 1] be a distribution

For c ∈ C, a quantum example is |ψc 〉 =
∑

x∈{0,1}n
√

D(x) |x , c(x)〉

State identification: For uniform c ∈ C (unknown), given |ψc 〉⊗T , identify c

Optimal measurement could be quite complicated,

but we can always use the Pretty Good Measurement (PGM)

If Popt is the success probability of the optimal measurement,

Ppgm is the success probability of the PGM, then

Popt ≥ Ppgm ≥ P2
opt (Barnum-Knill’02)
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Quantum examples help the coupon collector

Standard coupon collector

Problem: Suppose there are N coupons. How many coupons to draw (with
replacement) before having seen each coupon at least once?

Answer: Simple probability analysis shows Θ(N log N)

Variation to coupon collector

Problem: Suppose there are N coupons. Fix unknown i∗ ∈ {1, . . . ,N}. How many
coupons to draw (with replacement) from {1, . . . ,N}\{i∗} before learning i∗?

Answer: Same analysis as earlier shows Θ(N log N)

What if we are given “quantum examples”

Suppose a quantum learner obtains quantum examples 1√
N−1

∑
i∈({1,...,N}\{i∗}) |i 〉.

How many quantum examples before learning i∗?

Answer [ACKW’..]: Can learn i∗ using Θ(N) quantum examples

Proof idea: Analyze the success probability using the pretty good measurement.

If T = O(N), then Popt ≥ Ppgm ≥ 2/3
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Distribution-independent learning

Recall: PAC learning

Given (x , c(x)) examples where x ∼ D, a learner (ε, δ)-PAC-learns C if:

∀D ∀c ∈ C : Pr[ errD(c, h) ≤ ε︸ ︷︷ ︸
Approximately Correct

] ≥ 1− δ︸ ︷︷ ︸
Probably

Complexity measure: Number of labelled examples

For a concept class C, associate a combinatorial parameter called VC-dimension of C.

Classical PAC learning sample complexity is characterized by the VC-dimension of C

Fundamental theorem of PAC learning

Suppose VC-dim(C) = d

Blumer-Ehrenfeucht-Haussler-Warmuth’86:

every (ε, δ)-PAC learner for C needs Ω
(

d
ε

+ log(1/δ)
ε

)
examples

Hanneke’16: exists an (ε, δ)-PAC learner for C using O
(

d
ε

+ log(1/δ)
ε

)
examples
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VC-dimension and quantum sample complexity

Quantum bounds

Classical upper bound O
(

d
ε

+ log(1/δ)
ε

)
carries over to quantum

Atıcı-Servedio’04: lower bound Ω
(√

d
ε

+ log(1/δ)
ε

)
AW’17: Showed Ω

(
d
ε

+ log(1/δ)
ε

)
quantum examples are necessary

Proof idea: Reduce to state identification. For a good learner Popt ≥ 2/3, so

Ppgm ≥ P2
opt ≥ 4/9. If Ppgm ≥ 4/9, then T = Ω

(
d
ε

)
Quantum examples are no better than classical examples for PAC learning

Let’s get real!

In computational learning theory, agnostic learning and learning under
classification noise is a theoretical way to model noise in data

Again, in these realistic models we show that
quantum sample complexity equals classical sample complexity
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Future directions

More mileage out of Fourier sampling?

Extend result of Bshouty-Jackson from depth-2 circuits (i.e., DNFs) to depth-3?

Can we PAC-learn DNFs? If so, then we could possibly learn depth-3 circuits
under the uniform distribution

Scott Aaronson: Can AC0 be learnt in quantum polynomial time?
(One of his ten semi-grand challenges for quantum computing!)

Can TC0 be learnt in quantum polynomial time?
A theoretical way to understand neural networks

Can we learn constant-depth quantum circuits?

More open questions!

Can we learn the concept class of k-Fourier sparse Boolean functions using
O(k log k) samples matching our lower bound?

Theoretically, one could consider more optimistic PAC-like models where learner
need not succeed ∀c ∈ C and ∀D

Find more distributions (other than uniform) where quantum provides a speedup
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